DOI QR코드

DOI QR Code

A Study on the Properties of Transition Metal Nitride Coating Materials for the Recovery of Tungsten and Rare Metals

텅스텐 및 희유금속 회수를 위한 초경합금 전이금속질화물 코팅소재 특성연구

  • Kim, Jiwoo (Department of Organic Materials and Fiber Engineering, Soongsil University) ;
  • Kim, Myungjae (Department of Organic Materials and Fiber Engineering, Soongsil University) ;
  • Kim, Hyokyeong (Department of Organic Materials and Fiber Engineering, Soongsil University) ;
  • Park, Sohyun (Department of Organic Materials and Fiber Engineering, Soongsil University) ;
  • Seo, Minkyeong (Department of Organic Materials and Fiber Engineering, Soongsil University) ;
  • Kim, Jiwoong (Department of Organic Materials and Fiber Engineering, Soongsil University)
  • 김지우 (숭실대학교 유기신소재파이버공학과) ;
  • 김명재 (숭실대학교 유기신소재파이버공학과) ;
  • 김효경 (숭실대학교 유기신소재파이버공학과) ;
  • 박소현 (숭실대학교 유기신소재파이버공학과) ;
  • 서민경 (숭실대학교 유기신소재파이버공학과) ;
  • 김지웅 (숭실대학교 유기신소재파이버공학과)
  • Received : 2021.12.15
  • Accepted : 2022.01.03
  • Published : 2022.02.28

Abstract

The recycling of coated cemented carbide scraps is becoming increasingly significant for the recovery of rare metals. However, coatings consisting of Group IV and V transition metal nitrides are one of the challenging factors in obtaining high-purity materials. We investigated the structural, elastic, and mechanical properties of Group IV and V transition-metal nitrides (TiN, VN, ZrN, NbN, HfN, and TaN) using first-principle calculations. Convergence tests were performed to obtain reliable calculated results. The equilibrium structures of the nitrides were in good agreement with those of a previous study, indicating the reliability of the data. Group IV transition metal nitrides show a higher covalent bonding nature. Thus, they exhibit a higher degree of brittleness than that of Group V transition metal nitrides. In contrast, Group V transition metal nitrides show weaker resistance to shear loading and more ductile behavior than Group IV transition metal nitrides because of the metallic bonds characterized by valence electron concentration. The results of the crystal orbital Hamilton population analysis showed good agreement with the shear resistance tendencies of all transition metal nitrides.

최근 희유금속 자원 회수에서 초경합금 스크랩 재활용의 중요성이 증가하고 있다. 그러나 IV, V족 전이금속 질화물로 코팅된 초경합금 스크랩에서 고순도 분말 회수에서 어려움을 겪고 있다. 제1원리 계산을 사용하여 IV 및 V족 전이금속 질화물(TiN, VN, ZrN, NbN, HfN 및 TaN)의 구조, 탄성 및 기계적 특성을 조사하였다. IV족 전이금속 질화물은 V족 전이금속 질화물보다 높은 공유결합 특성을 보였다. 따라서 IV족 전이금속 질화물은 V족 전이금속 질화물보다 취성 거동을 보였다. 대조적으로 V족 전이금속 질화물은 최외각전자 농도에 영향받는 금속결합의 특성 때문에 IV족 전이금속 질화물보다 전단응력에 대한 약한 저항성과 연성 거동을 보였다. Crystal orbital Hamilton population 분석 결과는 모든 전이금속 질화물의 전단 저항 경향성이 일치함을 보여주었다.

Keywords

Acknowledgement

본 연구는 2020년도 정부(과학기술정보통신부)의 재원으로 한국연구재단의 지원(No. NRF-2020R1F1A1071104)과 2020년도 정부(산업통산자원부)의 재원으로 한국산업기술진흥원의 지원을 받아 수행된 연구임(P0012770, 2020년 산업혁신인재성장지원사업).

References

  1. Tomoyuki, I., TaKeshi, I., Hideki, M., et al., 2012 : Development of technologies for recycling cemented carbide scrap and reducing tungsten use in cemented carbide tools, SEI Technical Review, 75, pp.30-46.
  2. Suh. Y, Kim. J, Kim. J, 2020. KR. 10-2133278.
  3. Shemi, A., Magumise, A., Ndlovu, S., et al., 2018 : Recycling of tungsten carbide scrap metal: A review of recycling methods and future prospects, Minerals Engineering, 122, pp.195-205. https://doi.org/10.1016/j.mineng.2018.03.036
  4. Katiyar, P. K., Randhawa, N. S., 2020 : A comprehensive review on recycling methods for cemented tungsten carbide scraps highlighting the electrochemical techniques, International Journal of Refractory Metals and Hard Materials, 90, pp.105251. https://doi.org/10.1016/j.ijrmhm.2020.105251
  5. Shemi, A., Magumise, A., Ndlovu, S., et al., 2018 : Recycling of tungsten carbide scrap metal: A review of recycling methods and future prospects, Minerals Engineering, 122, pp.195-205. https://doi.org/10.1016/j.mineng.2018.03.036
  6. Aouadi, S. M., 2006 : Structural and mechanical properties of TaZrN films: Experimental and ab initio studies, Journal of Applied Physics, 99(5), pp.053507. https://doi.org/10.1063/1.2178394
  7. Kim, D. J., Cho, Y.R., Lee, M.J., et al., 1999 : Properties of TiN-TiC multilayer coatings using plasma-assisted chemical vapor deposition, Surface and Coatings Technology, 116(119), pp.906-910.
  8. Maerky, C., Guillou, M. O., Henshall, J. L., et al., 1996 : Indentation hardness and fracture toughness in single crystal TiC0.96, Materials Science and Engineering: A, 209(1-2), pp.329-336. https://doi.org/10.1016/0921-5093(95)10152-7
  9. Jhi, S. H., Ihm, J., Loule, S. G., et al., 1999 : Electronic mechanism of hardness enhancement in transition-metal carbonitrides, Nature, 399, pp.132-134. https://doi.org/10.1038/20148
  10. Kuang, H., Tan, D., He, W., et al., 2017 : Mechanism of multi-layer composite coatings in the zinc process of recycling coated WC-Co cemented-carbide scrap, Materiali in tehnologije, 51(6), pp.997-1003. https://doi.org/10.17222/mit.2017.049
  11. Kang, D. B., 2013 : Effect of valence electron concentration on elastic properties of 4d transition metal carbides MC (M = Y, Zr, Nb, and Rh)., Bulletin of the Korean Chemical Society, 34(7), pp.2171-2175. https://doi.org/10.5012/bkcs.2013.34.7.2171
  12. Kresse, G., Furthmuller, J., 1996 : Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set, Computational Materials Science, 6(1), pp.15-50. https://doi.org/10.1016/0927-0256(96)00008-0
  13. Perdew, J. P., Burke, K., Ernzerhof, M., 1996 : Generalized gradient approximation made simple, Physical Review Letters, 77(18), pp.3865-3868. https://doi.org/10.1103/PhysRevLett.77.3865
  14. Monkhorst, H. J., Pack, J. D., 1976 : Special points for Brillouin-zone integrations, Physical Review B, 13(12), pp.5188. https://doi.org/10.1103/PhysRevB.13.5188
  15. Meyers, M. A., Chawla, K. K., 2008 : Mechanical behavior of materials, pp.855, 4th Edition Cambridge University Press, New York.
  16. Voigt, W., 1910 : Lehrbuch der kristallphysik:(mit ausschluss der kristalloptik), pp.979, Springer, Wiesbaden.
  17. Reuss, A., 1929 : Berechnung der fliessgrenze von mischkristallen auf grund der plastizitatsbedingung fur einkristalle., ZAMM - zeitschrift fur angewandte mathematik und mechanik, 9(1), pp.49. https://doi.org/10.1002/zamm.19290090104
  18. Hill, R., 1952 : The elastic behaviour of a crystalline aggregate, proceedings of the physical Society. Section A, 65(5) pp.349. https://doi.org/10.1088/0370-1298/65/5/307
  19. Nelson, R., Ertural, C., George, J., et al., 2020, LOBSTER: Local orbital projections, atomic charges, and chemical-bonding analysis from projector-augmented-wave-based density-functional theory, Journal of Computational Chemistry, 41(21), pp.1931-1940. https://doi.org/10.1002/jcc.26353
  20. Zheng, K., Yang, F., Pan, M., et al., 2021 : Effect of surface line/regular hexagonal texture on tribological performance of cemented carbide tool for machining Ti-6Al-4V alloys, International Journal of Advanced Manufacturing Technology, 116(9-10), pp.3149-3162. https://doi.org/10.1007/s00170-021-07636-9
  21. Kim, J., Suh, Y. J., 2017 : Temperature- and pressure-dependent elastic properties, thermal expansion ratios, and minimum thermal conductivities of ZrC, ZrN, and Zr (C0.5N0.5), Ceramics International, 43(15), pp.12968-12974. https://doi.org/10.1016/j.ceramint.2017.06.195
  22. Kim, J., Kang, S., 2012 : Elastic and thermo-physical properties of TiC, TiN, and their intermediate composition alloys using ab initio calculations, Journal of Alloys and Compounds, 528, pp.20-27. https://doi.org/10.1016/j.jallcom.2012.02.124
  23. Born, M., Huang, K., Lax, M., 1955 : Dynamical theory of crystal lattices, American Journal of Physics, 23(7), pp.474. https://doi.org/10.1119/1.1934059
  24. Sun, W., Holder, A., Orvananos, B., et al., 2017 : Thermodynamic Routes to Novel Metastable Nitrogen-Rich Nitrides, Chemistry of Materials, 29(16), pp.6936-6946. https://doi.org/10.1021/acs.chemmater.7b02399
  25. Haglund, J., Grimvall, G., Jarlborg, T., et al., 1991 : Band structure and cohesive properties of 3d transition-metal carbides and nitrides with the NaCl-type structure, Physical Review B, 43(18), pp.14400-14408. https://doi.org/10.1103/physrevb.43.14400
  26. Guillermet, A. F., Haglund, J., Grimvall, G., 1992 : Cohesive properties of 4d transition-metal carbides and nitrides in the NaCl-type structure, Physical Review B, 45(20), pp.11557-11567. https://doi.org/10.1103/physrevb.45.11557
  27. Guillermet, A. F., Haglund, J., Grimvall, G., 1993 : Cohesive properties and electronic structure of 5d transitionmetal carbides and nitrides in the NaCl structure, Physical Review B, 48(16), pp.11673-11684. https://doi.org/10.1103/physrevb.48.11673
  28. Chen, X. J., Struzhkin, V. V., Wu, Z., et al., 2005 : Hard superconducting nitrides, Proceedings of the National Academy of Sciences of the United States of America, 102(9), pp.3198-3201. https://doi.org/10.1073/pnas.0500174102
  29. Wang, F., Holec, D., Oden, M., et al., 2017 : Systematic ab initio investigation of the elastic modulus in quaternary transition metal nitride alloys and their coherent multilayers, Acta Materialia, 127, pp.124-132. https://doi.org/10.1016/j.actamat.2017.01.017
  30. Chen, W., Jiang. J. Z., 2010 : Elastic properties and electronic structures of 4d- and 5d-transition metal mono-nitrides, Journal of Alloys and Compounds, 499(2), pp. 243-254. https://doi.org/10.1016/j.jallcom.2010.03.176
  31. Balasubramanian, K., Khare, S. V., Gall, D., 2018 : Valence electron concentration as an indicator for mechanical properties in rocksalt structure nitrides, carbides and carbonitrides, Acta Materialia, 152, pp.175-185. https://doi.org/10.1016/j.actamat.2018.04.033
  32. Kim, J., Kim, M., Roh, K. M., et al., 2019 : Bond characteristics, mechanical properties, and high-temperature thermal conductivity of (Hf1-xTax)C composites, Journal of the American Ceramic Society, 102(10), pp.6298-6308. https://doi.org/10.1111/jace.16466
  33. Eck, B., Dronskowski, R., Takahashi, M., et al., 1999 : Theoretical calculations on the structures, electronic and magnetic properties of binary 3d transition metal nitrides, Journal of Materials Chemistry, 9(7), pp.1527-1537. https://doi.org/10.1039/a809935i