DOI QR코드

DOI QR Code

Effect of plastic deformation on the martensitic transformations in TiNi alloy

  • Belyaev, Fedor S. (Laboratory of Mathematical Methods in Mechanics of Materials, Institute for Problems in Mechanical Engineering of the RAS) ;
  • Evard, Margarita E. (Saint Petersburg State University) ;
  • Volkov, Aleksandr E. (Saint Petersburg State University)
  • Received : 2021.07.24
  • Accepted : 2021.10.19
  • Published : 2022.02.25

Abstract

A model of plastic deformation of the shape memory alloys which describes dislocation slip at the microlevel is developed. A condition similar to the Schmid law was adopted for the determination of dislocation slip onset. A description of the interaction of plastic deformation and martensitic transformations by taking into account the densities of deformation defects is proposed. It is shown that the model can correctly describe the effect of plastic strain on the shape memory effect. The proposed model is also capable of describing the two-way shape memory effect.

Keywords

Acknowledgement

The reported study was funded by RFBR, projects 19-31-60035 and 19-01-00685.

References

  1. Arghavani, J., Auricchio, F., Naghdabadi, R., Reali, A. and Sohrabpour, S. (2010), "A 3-D phenomenological constitutive model for shape memory alloys under multiaxial loadings", Int. J. Plast., 26, 976-991. https://doi.org/10.1016/j.ijplas.2009.12.003
  2. Auricchio, F., Reali, A. and Stefanelli, U. (2007), "A three-dimensional model describing stress-induced solid phase transformation with permanent inelasticity", Int. J. Plast., 23, 207-226. https://doi.org/10.1016/j.ijplas.2006.02.012
  3. Beiraghi, H. (2019), "Earthquake effect on the concrete walls with shape memory alloy reinforcement", Smart Struct. Syst., Int. J., 24(4), 491-506. https://doi.org/10.12989/sss.2019.24.4.491
  4. Belyaev, S.P., Resnina, N.N. and Volkov, A.E. (2006), "Influence of irreversible plastic deformation on the martensitic transformation and shape memory effect in TiNi alloy", Materials Science and Engineering: A, 438-440, 627-629. https://doi.org/10.1016/j.msea.2006.02.067
  5. Belyaev, F.S., Evard, M.E., Volkov, A.E. and Volkova, N.A. (2015), "A microstructural model of SMA with microplastic deformation and defects accumulation: application to thermocyclic loading", Mater. Today: Proceedings, 2(suppl. 3), S583-S587. https://doi.org/10.1016/j.matpr.2015.07.352
  6. Belyaev, F.S., Volkov, A.E. and Evard, M.E. (2018), "Microstructural modeling of fatigue fracture of shape memory alloys at thermomechanical cyclic loading", AIP Conference Proceedings, 1959, 070003. https://doi.org/10.1063/1.5034678
  7. Beliaev, F.S., Evard, M.E., Ostropiko, E.S., Razov, A.I. and Volkov, A.E. (2019), "Aging Effect on the One-Way and Two-Way Shape Memory in TiNi-Based Alloys", Shape Memory and Superelasticity, 5(3), 218-229. https://doi.org/10.1007/s40830-019-00226-5
  8. Bouvet, C., Calloch, S. and Lexcellent, C. (2004), "A phenomenological model for pseudoelasticity of shape memory alloys under multiaxial proportional and nonproportional loadings", Eur. J. Mech. A-Solid, 23, 37-61. https://doi.org/10.1016/j.euromechsol.2003.09.005
  9. Chatziathanasiou, D., Chemisky, Y., Chatzigeorgiou, G. and Meraghni, F. (2016), "Modeling of coupled phase transformation and reorientation in shape memory alloys under non-proportional thermomechanical loading", Int. J. Plast., 82, 192-224. https://doi.org/10.1016/j.ijplas.2016.03.005
  10. Chemisky, Y., Duval, A., Patoor, E. and Ben Zineb, T. (2011), "Constitutive model for shape memory alloys including phase transformation, martensitic reorientation and twins accommodation", Mech. Mater., 43, 361-376. https://doi.org/10.1016/j.mechmat.2011.04.003
  11. Chowdhury, P. and Sehitoglu, H. (2017), "A revisit to atomistic rationale for slip in shape memory alloys", Progress in Mater. Sci., 85, 1-42. https://doi.org/10.1016/j.pmatsci.2016.10.002
  12. Chrysostomou, C.Z., Dernetriou, T. and Stassis, A. (2008), "Health-monitoring and system-identification of an ancient aqueduct", Smart Struct. Syst., Int. J., 4(2), 183-194. https://doi.org/10.12989/sss.2008.4.2.183
  13. El-Attar, A., Saleh, A., El Habbali, I., Zaghw, A.H. and Osman, A. (2008), "The use of SMA wire dampers to enhance the seismic performance of two historical Islamic minarets", Smart Struct. Syst., Int. J., 4(2), 221-232. https://doi.org/10.12989/sss.2008.4.2.221
  14. El-Borgi, S., Neifar, M., Jabeur, M.B., Cherif, D. and Smaoui, H. (2008), "Use of copper shape memory alloys in retrofitting historical monuments", Smart Struct. Syst., Int. J., 4(2), 247-259. https://doi.org/10.12989/sss.2008.4.2.247
  15. Evard, M.E. and Volkov, A.E. (1999), "Modeling of martensite accommodation effect on mechanical behavior of shape memory alloys", J. Eng. Mater. Technol., 121(1), 102-104. https://doi.org/10.1115/1.2815989
  16. Evard, M.E., Volkov, A.E. and Bobeleva, O.V. (2006), "An approach for modelling fracture of shape memory alloy parts", Smart Struct. Syst., Int. J., 2(4), 357-363. https://doi.org/10.12989/sss.2006.2.4.357
  17. Gao, X., Huang, M. and Brinson, L.C. (2000), "A multivariant model for SMAs Part 1. Crystallographic issues for single crystal model", Int. J. Plasticity, 16(10-11), 1345-1369. https://doi.org/10.1016/S0749-6419(00)00013-9
  18. Hartl, D.J. and Lagoudas, D.C. (2007), "Aerospace applications of shape memory alloys", J. Aerospace Eng., 221, 535-552. https://doi.org/10.1243/09544100JAERO211
  19. Huang, M., Gao, X. and Brinson, L.C. (2000), "A multivariant micromechanical model for SMAs, Part 2. Polycrystal model", Int. J. Plast., 16(10-11), 1371-1390. https://doi.org/10.1016/S0749-6419(00)00014-0
  20. Humbeeck, J.V. (1999), "Non-medical applications of shape memory alloys", Mater. Sci. Eng. A, 273, 134-148. https://doi.org/10.1016/S0921-5093(99)00293-2
  21. Ilyushin, A.A. (1990), Continuum Mechanics, Moscow State University, Moscow, Russia. [In Russian]
  22. Lagoudas, D.C. and Entchev, P.B. (2004), "Modeling of transformation-induced plasticity and its effect on the behavior of porous shape memory alloys. Part I: constitutive model for fully dense SMAs", Mech. Mater., 36, 865-892. https://doi.org/10.1016/j.mechmat.2003.08.006
  23. Likhachev, V.A. (1995), "Structure-analytical theory of martensitic unelasticity", J. Phys. IV, 05(C8), 137-142. https://doi.org/10.1051/jp4:1995816
  24. Long, X., Peng, X., Fu, T., Tang, S. and Hu, N. (2017), "A micro-macro description for pseudoelasticity of NiTi SMAs subjected to nonproportional deformations", Int. J. Plast., 90, 44-65. https://doi.org/10.1016/j.ijplas.2016.12.003
  25. Manchiraju, S. and Anderson, P.M. (2010), "Coupling between martensitic phase transformations and plasticity: A microstructure-based finite element model", Int. J. Plasticity, 26(10), 1508-1526. https://doi.org/10.1016/j.ijplas.2010.01.009
  26. Morgan, N.B. (2004), "Medical shape memory alloy applications-the market and its products", Mater. Sci. Eng. A, 378, 16-23. https://doi.org/10.1016/j.msea.2003.10.326
  27. Narjabadifam, P., Noori, M., Cardone, D., Eradat, R. and Kiani, M. (2020), "Shape memory alloy (SMA)-based Superelasticity-assisted Slider (SSS): an engineering solution for practical aseismic isolation with advanced materials", Smart Struct. Syst., Int. J., 26(1), 89-102. https://doi.org/10.12989/sss.2020.26.1.089
  28. Niclaeys, C., Ben Zineb, T., Arbab-Chirani, S. and Patoor, E. (2002), "Determination of the interaction energy in the martensitic state", Int. J. Plasticity, 18(11), 1619-1647. https://doi.org/10.1016/S0749-6419(02)00032-3
  29. Panico, M. and Brinson, L.C. (2007), "A three-dimensional phenomenological model for martensite reorientation in shape memory alloys", J. Mech. Phys. Solids, 55, 2491-2511. https://doi.org/10.1016/j.jmps.2007.03.010
  30. Patoor, E., Eberhardt, A. and Berveiller, M. (1996), "Micromechanical modelling of superelasticity in shape memory alloys", J. Phys. IV, 06(C1), 277-292. https://doi.org/10.1051/jp4:1996127
  31. Patoor, E., Lagoudas, D.C., Entchev, P.B., Brinson, L.C. and Gao, X. (2006), "Shape memory alloys, Part I: general properties and modeling of single crystals", Mech. Mater., 38, 391-429. https://doi.org/10.1016/j.mechmat.2005.05.027
  32. Peng, X., Pi, W. and Fan, J. (2008), "A microstructure-based constitutive model for the pseudoelastic behavior of NiTi SMAs", Int. J. Plast., 24, 966-990. https://doi.org/10.1016/j.ijplas.2007.08.003
  33. Sun, Q.-P. and Lexcellent, C. (1996), "On the unified micromechanics constitutive description of one-way and two-way shape memory effects", J. Phys. IV, 06(C1), 367-375. https://doi.org/10.1051/jp4:1996135
  34. Surikova, N.S. and Chumlyakov, Y.I. (2000), "Mechanisms of plastic deformation of the titanium nickelide single crystals", Phys. Met. Metallogr., 89(2), 98-107.
  35. Thamburaja, P. (2005), "Constitutive equations for martensitic reorientation and detwinning in shape-memory alloys", J. Mech. Phys. Solids., 53, 825-856. https://doi.org/10.1016/j.jmps.2004.11.004
  36. Volkov, A.E. and Casciati, F. (2001), "Simulation of dislocation and transformation plasticity in shape memory alloy polycrystals", In: Shape Memory Alloys. Advances in Modelling and Applications, (Auricchio, F., Faravelli, L., Magonette, G., Torra, V., Eds.), CIMNE, Barcelona, Spain, pp. 88-104.
  37. Volkov, A.E., Evard, M.E., Kurzeneva, L.N., Likhachev, V.A., Sakharov, V.Y. and Ushakov, V.V. (1996), "Mathematical modeling of martensitic inelasticity and shape memory effects", J. Tech. Phys., 66(11), 3-34. [In Russian]
  38. Volkov, A.E., Emelyanova, E.V., Evard, M.E. and Volkova, N.A. (2013), "An explanation of phase deformation tension-compression asymmetry of TiNi by means of microstructural modeling", J. Alloys Compounds, 577(S1), S127-S130. https://doi.org/10.1016/j.jallcom.2012.05.131
  39. Volkov, A.E., Belyaev, F.S., Evard, M.E. and Volkova, N.A. (2015), "Model of the evolution of deformation defects and irreversible strain at thermal cycling of stressed TiNi alloy specimen", Proceedings of the 10th European Symposium on Martensitic Transformations (MATEC Web of Conferences), Volume 33, Article No. 03013. https://doi.org/10.1051/matecconf/20153303013
  40. Wang, X.M., Xu, B.X. and Yue, Z.F. (2008), "Micromechanical modelling of the effect of plastic deformation on the mechanical behaviour in pseudoelastic shape memory alloys", Int. J. Plast., 24, 1307-1332. https://doi.org/10.1016/j.ijplas.2007.09.006
  41. Wang, J., Moumni, Z. and Zhang W. (2017), "A thermomechanically coupled finite-strain constitutive model for cyclic pseudoelasticity of polycrystalline shape memory alloys", Int. J. Plast., 97, 194-221. https://doi.org/10.1016/j.ijplas.2017.06.003
  42. Yu, C., Kang, G., Song, D. and Kan, Q. (2012), "Micromechanical constitutive model considering plasticity for super-elastic NiTi shape memory alloy", Computat. Mater. Sci., 56, 1-5. https://doi.org/10.1016/j.commatsci.2011.12.032
  43. Yu, C., Kang, G., Kan, Q. and Song, D. (2013), "A micromechanical constitutive model based on crystal plasticity for thermo-mechanical cyclic deformation of NiTi shape memory alloys", Int. J. Plast., 44, 161-191. https://doi.org/10.1016/j.ijplas.2013.01.001
  44. Yu, C., Kang, G. and Kan, Q. (2014), "Crystal plasticity based constitutive model of NiTi shape memory alloy considering different mechanisms of inelastic deformation", Int. J. Plast., 54, 132-162. https://doi.org/10.1016/j.ijplas.2013.08.012
  45. Yu, C., Kang, G., Song, D. and Kan, Q. (2015), "Effect of martensite reorientation and reorientation-induced plasticity on multiaxial transformation ratchetting of super-elastic NiTi shape memory alloy: New consideration in constitutive model", Int. J. Plast., 67, 69-101. https://doi.org/10.1016/j.ijplas.2014.10.001
  46. Yu, C., Kang, G. and Kan, Q. (2018a), "An equivalent local constitutive model for grain size dependent deformation of NiTi polycrystalline shape memory alloys", Int. J. Mech. Sci., 138-139, 34-41. https://doi.org/10.1016/j.ijmecsci.2018.02.001
  47. Yu, C., Kang, G. and Kan, Q. (2018b), "A micromechanical constitutive model for grain size dependent thermo-mechanically coupled inelastic deformation of super-elastic NiTi shape memory alloy", Int. J. Plast., 105 99-127. https://doi.org/10.1016/j.ijplas.2018.02.005
  48. Zaki, W. and Moumni, Z. (2007), "A three-dimensional model of the thermomechanical behavior of shape memory alloys", J. Mech. Phys. Solids., 55, 2455-2490. https://doi.org/10.1016/j.jmps.2007.03.012