DOI QR코드

DOI QR Code

No-backlash characteristics analysis of a cycloidal ball planetary transmission under axial pre-tightening

  • Yang, Ronggang (College of Mechanical and Electrical Engineering, Wenzhou University) ;
  • Wang, Naige (College of Mechanical and Electrical Engineering, Wenzhou University) ;
  • Xiang, Jiawei (College of Mechanical and Electrical Engineering, Wenzhou University)
  • Received : 2021.05.06
  • Accepted : 2021.11.16
  • Published : 2022.02.25

Abstract

Cycloidal ball planetary transmission (CBPT) has many applications as precision reducer, such as precision machinery and automation drive systems etc. The traditional analytical model of CBPT cannot accurately describe the change of the normal force of meshing points, and thus cannot describe the precise transmission process of meshing pairs. In the paper, a method for deriving the normal force equation is put forward by using the non-linear relationship between force and deformation in elastic mechanics. The two-point contact analytical models of all the meshing pairs are established to obtain the micro-displacement analytical model of CBPT under axial pre-tightening. Then, the non-real-time two-point contact analytical models of all the meshing pairs are further constructed to obtain the normal force expression to determine the critical compression coefficients. Experimental investigations are performed to verify the analytical model using the critical compression coefficients.

Keywords

Acknowledgement

Supported by the National Natural Science Foundation of China (no.51275440), the Wenzhou Basic Industrial Technology Project of China (Grant Nos. ZG2019032 and G20190015), the Zhejiang Special Support Program for High-level Personnel Recruitment of China (No. 2018R52034).

References

  1. An, Z.J., Yang, R.G. and Yi, Y.L. (2016), "Research on engagement normal force and elastic backlash of the precision ball transmission", J. Mech. Eng., 52, 42-48. https://doi.org/10.3901/JME.2016.09.042.
  2. Beckerle, P., Wojtusch, J., Rinderknecht, S. and Stryk, O.V. (2014), "Analysis of system dynamic influences in robotic actuators with variable stiffness", Smart Struct. Syst., 13(4), 711-730. https://doi.org/10.12989/sss.2014.13.4.711.
  3. Besharati, S.R., Dabbagh, V., Amini, H., Sarhan, A.A.D., Akbari, J. and Hamdi, M. (2015), "Nonlinear dynamic analysis of a new antibacklash gear mechanism design for reducing dynamic transmission error", J. Mech. Des., 137, 054502. https://doi.org/10.1115/1.4029582.
  4. Brauer, J. (2005), "Transmission error in anti-backlash conical involute gear transmissions: A global-local FE approach", Finite Elem. Anal. Des., 41, 431-457. https://doi.org/10.1016/j.finel.2004.04.007.
  5. Brethee, K.F., Zhen, D., Gu, F.S., Gu, F.S. and Ball, A.D. (2017), "Helical gear wear monitoring: Modelling and experimental validation", Mech. Mach. Theory, 117, 210-229. https://doi.org/10.1016/j.mechmachtheory.2017.07.012.
  6. Chang, J.C., Wu, S.S.J. and Hung, J.P. (2007), "Characterization of the dynamic behavior of a linear guideway mechanism". Struct. Eng. Mech., 25(1), 1-20. https://doi.org/10.12989/sem.2007.25.1.001.
  7. Chen, B.K., Wang, S.Y., Jiang, X.J., Fang, T.T. and Li, C.Y. (2007), "Manufacturing method for the conic cycloidal gear pair", J. Mech. Eng., 43, 147-151. https://doi.org/10.3901/jme.2007.01.147.
  8. Chen, B.K., Zhong, H., Liu, J.Y., Li, C.Y. and Fang, T.T. (2012), "Generation and investigation of a new cycloid drive with double contact", Mech. Mach. Theory, 49, 270-283. https://doi.org/10.1016/j.mechmachtheory.2011.10.001.
  9. Dong, B., Liu, K.P. and Li, Y.C. (2017), "Decentralized control of harmonic drive based modular robot manipulator using only position measurements: theory and experimental verification", J. Intell. Robot. Syst., 88, 3-18. https://doi.org/10.1007/s10846-017-0521-x.
  10. Duan, L.Y., An, Z.J., Yang, R.G. and Fu, Z.Q. (2016), "Mechanical model of coupling rolling and sliding friction in real-time non-clearance precision ball transmission", Tribol. Int., 103, 218-227. https://doi.org/10.1016/j.triboint.2016.06.032.
  11. Ebrahimi, S., Salahshoor, E. and Moradi, S. (2017), "Characterization of the effect of joint clearance on the energy loss of flexible multibody systems with variable kinematic structure". Struct. Eng. Mech., 63(5), 691-702. https://doi.org/10.12989/sem.2017.63.5.691.
  12. Feng, K., Borghesani, P., Smith, W.A., Randall, R.B., Chin, Z.Y., Ren, J.Z. and Peng, Z.X. (2019), "Vibration-based updating of wear prediction for spur gears", Wear, 426, 1410-1415. https://doi.org/10.1016/j.mechmachtheory.2011.10.001.
  13. Karagiannidisa, A. and Vosniakos, G.C. (2014), "On low cost model-based monitoring of industrial robotic arms using standard machine vision", Adv. Robot. Res., 1(1), 81-99. https://doi.org/10.12989/arr.2014.1.1.081.
  14. Montazeri-Gh, M. and Kavianipour, O. (2014), "Investigation of the semi-active electromagnetic damper", Smart Struct. Syst., 13(3), 419-434. https://doi.org/10.12989/sss.2014.13.3.419.
  15. Myung, H., Wang, Y., Kang, S.C.J. and Chen, X.Q. (2014), "Survey on robotics and automation technologies for civil infrastructure", Smart Struct. Syst., 13(6), 891-899. https://doi.org/10.12989/sss.2014.13.6.891.
  16. Park, J., Jeon, B., Park, J., Cui, J., Kim, M. and Youn, B.D. (2018), "Failure prediction of a motor-driven gearbox in a pulverizer under external noise and disturbance", Smart. Struct. Syst., 22(2), 185-192. https://doi.org/10.12989/sss.2018.22.2.185.
  17. Pham, A.D. and Ahn, H.J. (2018), "High precision reducers for industrial robots driving 4th industrial revolution: State of arts, analysis, design, performance evaluation and perspective", Int. J. Prec. Eng. Manuf.-Green Technol., 5, 519-533. https://doi.org/10.1007/s40684-018-0058-x.
  18. Qu, W.T., Peng, X.Q., Zhao, N. and Guo, H. (2012), "Finite element generalized tooth contact analysis of double circular arc helical gears", Struct. Eng. Mech., 43(4), 439-448. https://doi.org/10.12989/sem.2012.43.4.439.
  19. Rudolf, C., Martin, T. and Wauer, J. (2010), "Control of PKM machine tools using piezoelectric self-sensing actuators on basis of the functional principle of a scale with a vibrating string", Smart Struct. Syst., 6(2), 167-182. https://doi.org/10.12989/sss.2010.6.2.167.
  20. Shen, Z.X., Qiao, B.J., Yang, L.H., Luo, W. and Chen, X.F. (2019), "Evaluating the influence of tooth surface wear on TVMS of planetary gear set", Mech. Mach. Theory, 136, 206-223. https://doi.org/10.1016/j.mechmachtheory.2019.03.014.
  21. Shi, S.Y., Lin, J., Wang, X.F. and Xu, X.Q. (2015), "Analysis of the transient backlash error in CNC machine tools with closed loops", Int. J. Mach. Tool. Manuf., 93, 49-60. https://doi.org/10.1016/j.ijmachtools.2015.03.009.
  22. Shim, S.B., Park, Y.J. and Kim, K.U. (2008), "Reduction of PTO rattle noise of an agricultural tractor using an anti-backlash gear", Biosyst. Eng., 100, 346-354. https://doi.org/10.1016/j.biosystemseng.2008.04.002.
  23. Stevens, A.B. and Hrenya, C.M. (2005), "Comparison of soft-sphere models to measurements of collision properties during normal impacts", Powder Technol., 154, 99-109. https://doi.org/10.1016/j.powtec.2005.04.033.
  24. Sun, P.F, An, Z.J. and Jiang, W. (2018), "Analysis of non-Hertz contact stress and bearing capacity on meshing pairs in a real-time non-clearance precision ball transmission", J. Brazil. Soc. Mech. Sci. Eng., 40(6), 1-11. https://doi.org/10.1007/s40430-018-1197-2.
  25. Terada, H. (2010), "The development of gearless reducers with rolling balls", J. Mech. Sci. Technol., 24, 189-195. https://doi.org/10.1007/s12206-009-1155-0.
  26. Terada, H. and Imase, K. (2009), "Fundamental analysis of a cycloid ball reducer (5th Report)-development of a two stage type reduction mechanism", Int. J. JPN. S. Precis. Eng., 75, 1418-1422. https://doi.org/10.2493/jjspe.75.1418.
  27. Terada, H., Makino, H. and Imase, K. (1995), "Fundamental analysis of cycloid ball reducer (3rd report)-strength design", Int. J. JPN. S. Precis. Eng., 61, 1705-1709. https://doi.org/10.2493/jjspe.61.1705.
  28. Tsai, P.C., Cheng, C.C. and Hwang, Y.C. (2014), "Ball screw preload loss detection using ball pass frequency", Mech. Syst. Signal Pr., 48, 77-91. https://doi.org/10.1016/j.ymssp.2014.02.017.
  29. Verl, A., Frey, S. and Heinze, T. (2014), "Double nut ball screw with improved operating characteristics", Cirp. Ann-Manuf. Techn., 63, 361-364. https://doi.org/10.1016/j.cirp.2014.03.128.
  30. Wan, F., Li, G.X., Gong, J.Z. and Wu, B.Z. (2016), "Dynamic study of anti-backlash gears and angle-contact ball bearing based on a simplification of the Hertz contact theory", Proc. Inst. Mech. Eng., Part B: J. Eng. Manuf., 230, 66-82. https://doi.org/10.1177/0954405414554016.
  31. Xu, L.Z., Li, H.Y. and Li, C. (2016), "Displacements of the flexible ring for an electromechanical integrated harmonic piezodrive system", Struct. Eng. Mech., 60(6), 1079-1092. https://doi.org/10.1115/1.4026262.
  32. Yang, R.G. and An, Z.J. (2017), "Theoretical calculation and experimental verification of the elastic angle of a cycloid ball planetary transmission based on the axial pretightening force", Adv. Mech. Eng., 9, 1-17. https://doi.org/10.1177/1687814017734112.
  33. Zhang, C., Wang, S.P., Wang, Z.M. and Wang, X.J. (2015), "An accelerated life test model for harmonic drives under a segmental stress history and its parameter optimization", Chin. J. Aeronaut. 28, 1758-1765. https://doi.org/10.1016/j.cja.2015.07.003.
  34. Zhang, Y., An, Z.J. and Liu, Z.Q. (2019), "A dynamic model and modal analysis of a precision ball transmission system", J. Vib. Shock, 4(38), 166-174. https://doi.org/10.13465/j.cnki.jvs.2019.04.026.
  35. Zhao, J.I., Yan, S.Z. and Wu, J.N. (2014), "Analysis of parameter sensitivity of space manipulator with harmonic drive based on the revised response surface method", Acta Astronaut., 98, 86-96. https://doi.org/10.1016/j.cja.2015.07.003.
  36. Zhou, C.G., Feng, H.T., Chen, Z.T. and Ou, Y. (2016), "Correlation between preload and no-load drag torque of ball screws", Int. J. Mach. Tool. Manuf., 102, 35-40. https://doi.org/10.1016/j.ijmachtools.2015.11.010.