Acknowledgement
This research was performed by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science and ICT (NRF-2020R1A2C1013043). Authors express thanks for the support.
References
- Abdulkareem, O.A., Ramli, M. and Matthews, J.C. (2019), "Production of geopolymer mortar system containing high calcium biomass wood ash as a partial substitution to fly ash: An early age evaluation", Compos. Part B Eng., 174, 106941. https://doi.org/10.1016/j.compositesb.2019.106941.
- Adu-Amankwah, S., Khatib, J.M., Searle, D.E. and Black, L. (2016), "Effect of synthesis parameters on the performance of alkali-activated non-conformant EN 450 pulverised fuel ash", Constr. Build. Mater., 121, 453-459. http://doi.org/10.1016/j.conbuildmat.2016.05.132.
- Al-Azzawi, M., Yu, T. and Hadi, M.N.S. (2018), "Factors affecting the bond strength between the fly ash-based geopolymer concrete and steel reinforcement", Struct., 14, 262-272. https://doi.org/10.1016/j.istruc.2018.03.010.
- Al-Majidi, M.H., Lampropoulos, A., Cundy, A. and Meikle, S. (2016), "Development of geopolymer mortar under ambient temperature for in situ applications", Constr. Build. Mater., 120, 198-211. http://doi.org/10.1016/j.conbuildmat.2016.05.085.
- ASTM C191 (2019), Standard test methods for time of setting of hydraulic cement by vicat needle, ASTM International, West Conshohocken, PA, USA.
- ASTM C1437, (2020), Standard test method for flow of hydraulic cement mortar, ASTM International, West Conshohocken, PA, USA.
- ASTM C109, (2020), Standard test method for compressive strength of hydraulic cement mortars (Using 2-in. or [50 mm] Cube Specimens), ASTM International, West Conshohocken, PA, USA.
- Bashar, I.I., Alengaram, U.J., Jumaat, M.Z. and Islam, A. (2014), "The effect of variation of molarity of alkali activator and fine aggregate content on the compressive strength of the fly ash: Palm oil fuel ash based geopolymer mortar", Adv. Mater. Sci. Eng., 2014, 1-13. http://doi.org/10.1155/2014/245473.
- BSI (2011), BS EN 197-1:2011, Cement Composition Specifications and Conformity Criteria for Common Cements, British Standards Institution (BSI), London, UK.
- Canakci, H., Gullu, H. and Alhashemy, A. (2019), "Performances of using geopolymers made with various stabilizers for deep mixing", Mater., 12(16), 1-32. https://doi.org/10.3390/ma12162542.
- Cao, R., Zhang, S., Banthia, N., Zhang, Y. and Zhang, Z. (2020), "Interpreting the early-age reaction process of alkali-activated slag by using combined embedded ultrasonic measurement, thermal analysis, XRD, FTIR and SEM", Compos. Part B Eng., 186, 107840. https://doi.org/10.1016/j.compositesb.2020.107840.
- Cheah, C.B., Tan, L.E. and Ramli, M. (2019), "The engineering properties and microstructure of sodium carbonate activated fly ash/ slag blended mortars with silica fume", Compos. Part B Eng., 160, 558-572. https://doi.org/10.1016/j.compositesb.2018.12.056.
- Chuah, S., Duan, W.H., Pan, Z., Hunter, E., Korayem, A.H., Zhao, X.L., Collins, F. and Sanjayan, J.G. (2016), "The properties of fly ash based geopolymer mortars made with dune sand", Mater. Des., 92, 571-578. http://doi.org/10.1016/j.matdes.2015.12.070.
- Elyamany, H.E., Abd Elmoaty, A.E.M. and Elshaboury, A.M. (2018), "Setting time and 7-day strength of geopolymer mortar with various binders", Constr. Build. Mater., 187, 974-983. https://doi.org/10.1016/j.conbuildmat.2018.08.025.
- Esparham, A., Moradikhou, A.B., Andalib, F.K. and Avanaki, M.J. (2021), "Strength characteristics of granulated ground blast furnace slag-based geopolymer concrete", Adv. Concrete Constr., 11(3), 219-229. https://doi.org/10.12989/acc.2021.11.3.219.
- Farhan, N.A., Sheikh, M.N. and Hadi, M.N.S. (2019), "Investigation of engineering properties of normal and high strength fly ash based geopolymer and alkali-activated slag concrete compared to ordinary Portland cement concrete", Constr. Build. Mater., 196, 26-42. https://doi.org/10.1016/j.conbuildmat.2018.11.083.
- Fernandez-Jimenez, A. and Palomo, A. (2005), "Mid-infrared spectroscopic studies of alkali-activated fly ash structure", Microporous Mesoporous Mater., 86(1-3), 207-214. https://doi.org/10.1016/j.micromeso.2005.05.057.
- Garcia Lodeiro, I., Macphee, D.E., Palomo, A. and Fernandez-Jimenez, A. (2009), "Effect of alkalis on fresh C-S-H gels. FTIR analysis", Cement Concrete Res., 39(3), 147-153. https://doi.org/10.1016/j.cemconres.2009.01.003.
- Ghafoor, M.T., Khan, Q.S., Qazi, A.U., Sheikh, M.N. and Hadi, M.N.S. (2021), "Influence of alkaline activators on the mechanical properties of fly ash based geopolymer concrete cured at ambient temperature", Constr. Build. Mater., 273, 121752. https://doi.org/10.1016/j.conbuildmat.2020.121752.
- Gholampour, A., Ho, V.D. and Ozbakkaloglu, T., (2019), "Ambient-cured geopolymer mortars prepared with waste-based sands: Mechanical and durability-related properties and microstructure", Compos. Part B Eng., 160, 519-534. https://doi.org/10.1016/j.compositesb.2018.12.057.
- Goriparthi, M.R. (2017), "Effect of fly ash and GGBS combination on mechanical and durability properties of GPC", Adv. Concrete Constr., 5(4), 313. https://doi.org/10.12989/acc.2017.5.4.313.
- Hadi, M.N.S., Farhan, N.A. and Sheikh, M.N. (2017), "Design of geopolymer concrete with GGBFS at ambient curing condition using Taguchi method", Constr. Build. Mater., 140, 424-431. http://doi.org/10.1016/j.conbuildmat.2017.02.131.
- Hadi, M.N.S., Zhang, H. and Parkinson, S. (2019), "Optimum mix design of geopolymer pastes and concretes cured in ambient condition based on compressive strength, setting time and workability", J. Build. Eng., 23, 301-313. https://doi.org/10.1016/j.jobe.2019.02.006.
- Huseien, G.F., Mirza, J., Ismail, M. and Hussin, M.W. (2016), "Influence of different curing temperatures and alkali activators on properties of GBFS geopolymer mortars containing fly ash and palm-oil fuel ash", Constr. Build. Mater., 125, 1229-1240. http://doi.org/10.1016/j.conbuildmat.2016.08.153.
- Jindal, B.B. (2018), "Feasibility study of ambient cured geopolymer concrete-A review", Adv. Concrete Constr., 6(4), 387. https://doi.org/10.12989/acc.2018.6.4.387.
- Jindal, B.B. (2019), "Investigations on the properties of geopolymer mortar and concrete with mineral admixtures: A review", Constr. Build. Mater., 227, 116644. https://doi.org/10.1016/j.conbuildmat.2019.08.025.
- Ke, X. and Duan, Y. (2021), "Coupling machine learning with thermodynamic modelling to develop a composition-property model for alkali-activated materials", Compos. Part B Eng., 216, 108801. https://doi.org/10.1016/j.compositesb.2021.108801.
- Kuenzel, C., Neville, T.P., Donatello, S., Vandeperre, L., Boccaccini, A.R. and Cheeseman, C.R. (2013), "Influence of metakaolin characteristics on the mechanical properties of geopolymers", Appl. Clay Sci., 83, 308-314. http://doi.org/10.1016/j.clay.2013.08.023.
- Kuenzel, C. and Ranjbar, N. (2019), "Dissolution mechanism of fly ash to quantify the reactive aluminosilicates in geopolymerisation", Res. Conse. Recycl., 150, 104421. https://doi.org/10.1016/j.resconrec.2019.104421.
- Kurtoglu, A.E., Alzeebaree, R., Aljumaili, O., Nis, A., Gulsan, M.E., Humur, G. and Cevik, A. (2018), "Mechanical and durability properties of fly ash and slag based geopolymer concrete", Adv. Concrete Constr., 6(4), 345. https://doi.org/10.12989/acc.2018.6.4.345.
- Leong, H.Y., Ong, D.E.L., Sanjayan, J.G. and Nazari, A. (2016), "The effect of different Na2O and K2O ratios of alkali activator on compressive strength of fly ash based-geopolymer", Constr. Build. Mater., 106, 500-511. http://doi.org/10.1016/j.conbuildmat.2015.12.141.
- Longhi, M.A., Walkley, B., Rodriguez, E.D., Kirchheim, A.P., Zhang, Z. and Wang, H. (2019), "New selective dissolution process to quantify reaction extent and product stability in metakaolin-based geopolymers", Compos. Part B Eng., 176, 107172. https://doi.org/10.1016/j.compositesb.2019.107172.
- Ma, C.K., Awang, A.Z. and Omar, W. (2018), "Structural and material performance of geopolymer concrete: A review", Constr. Build. Mater., 186, 90-102. https://doi.org/10.1016/j.conbuildmat.2018.07.111.
- Mehta, A. and Siddique, R. (2017), "Strength, permeability and micro-structural characteristics of low-calcium fly ash based geopolymers", Constr. Build. Mater., 141, 325-334. http://doi.org/10.1016/j.conbuildmat.2017.03.031.
- Nath, P. and Sarker, P.K., (2014), "Effect of GGBFS on setting, workability and early strength properties of fly ash geopolymer concrete cured in ambient condition", Constr. Build. Mater., 66, 163-171. http://doi.org/10.1016/j.conbuildmat.2014.05.080.
- Nath, P. and Sarker, P.K. (2015), "Use of OPC to improve setting and early strength properties of low calcium fly ash geopolymer concrete cured at room temperature", Cement Concrete Compos., 55, 205-214. http://doi.org/10.1016/j.cemconcomp.2014.08.008.
- Nawaz, M., Heitor, A. and Sivakumar, M. (2020), "Geopolymers in construction-Recent developments", Constr. Build. Mater., 260, 120472. https://doi.org/10.1016/j.conbuildmat.2020.120472.
- Noushini, A., Castel, A., Aldred, J. and Rawal, A., (2020), "Chloride diffusion resistance and chloride binding capacity of fly ash-based geopolymer concrete", Cement Concrete Compos., 105, 103290. https://doi.org/10.1016/j.cemconcomp.2019.04.006.
- Panda, B., Unluer, C. and Tan, M.J. (2018), "Investigation of the rheology and strength of geopolymer mixtures for extrusion-based 3D printing", Cement Concrete Compos., 94, 307-314. https://doi.org/10.1016/j.cemconcomp.2018.10.002.
- Phoo-ngernkham, T., Maegawa, A., Mishima, N., Hatanaka, S. and Chindaprasirt, P. (2015), "Effects of sodium hydroxide and sodium silicate solutions on compressive and shear bond strengths of FA-GBFS geopolymer", Constr. Build. Mater., 91, 1-8. http://doi.org/10.1016/j.conbuildmat.2015.05.001.
- Rafeet, A., Vinai, R., Soutsos, M. and Sha, W. (2017), "Guidelines for mix proportioning of fly ash/GGBS based alkali activated concretes", Constr. Build. Mater., 147, 130-142. http://doi.org/10.1016/j.conbuildmat.2017.04.036.
- Ranjbar, N. and Kuenzel, C. (2017), "Influence of preheating of fly ash precursors to produce geopolymers", J. Am. Ceram. Soc., 100(7), 3165-3174. http://doi.org/10.1111/jace.14848.
- Samantasinghar, S. and Singh, S.P. (2019), "Fresh and hardened properties of fly ash-slag blended geopolymer paste and mortar", Int. J. Concrete Struct. Mater., 13(47), 1-12. https://doi.org/10.1186/s40069-019-0360-1.
- Shaikh, F.U.A. (2018), "Effects of slag content on the residual mechanical properties of ambient air-cured geopolymers exposed to elevated temperatures", J. Asian Ceram. Soc., 6(4), 342-358. https://doi.org/10.1080/21870764.2018.1529013.
- Singhal, D. (2017), "Development of mix design method for geopolymer concrete", Adv. Concrete Constr., 5(4), 377. https://doi.org/10.12989/acc.2017.5.4.377.
- Temuujin, J., Williams, R.P. and van Riessen, A. (2009), "Effect of mechanical activation of fly ash on the properties of geopolymer cured at ambient temperature", J. Mater. Proc. Tech., 209(12-13), 5276-5280. https://doi.org/10.1016/j.jmatprotec.2009.03.016.
- ul Haq, E., Kunjalukkal Padmanabhan, S. and Licciulli, A. (2014), "Synthesis and characteristics of fly ash and bottom ash based geopolymers-A comparative study", Ceram. Int., 40(2), 2965- 2971. http://doi.org/10.1016/j.ceramint.2013.10.012.
- Ul Rehman, M., Rashid, K., Ul Haq, E., Hussain, M. and Shehzad, N. (2020), "Physico-mechanical performance and durability of artificial lightweight aggregates synthesized by cementing and geopolymerization", Constr. Build. Mater., 232, 117290. https://doi.org/10.1016/j.conbuildmat.2019.117290.
- Zhang, P., Gao, Z., Wang, J., Guo, J., Hu, S. and Ling, Y. (2020), "Properties of fresh and hardened fly ash/slag based geopolymer concrete: A review", J. Clean. Prod., 270, 122389. https://doi.org/10.1016/j.jclepro.2020.122389.
- Zhang, P., Zheng, Y., Wang, K. and Zhang, J. (2018), "A review on properties of fresh and hardened geopolymer mortar", Compos. Part B Eng., 152, 79-95. https://doi.org/10.1016/j.compositesb.2018.06.031.