• Title/Summary/Keyword: geopolymer synthesis

Search Result 10, Processing Time 0.024 seconds

Properties of recycled steel fibre reinforced expanded perlite based geopolymer mortars

  • Celikten, Serhat
    • Advances in concrete construction
    • /
    • v.13 no.1
    • /
    • pp.25-34
    • /
    • 2022
  • The production of geopolymer is considered as a cleaner process due to much lower CO2 emission than that from the production of Portland cement. This paper presents a study of the potential use of recycled steel fibre (RSF) coming from the recycling process of the old tires in geopolymer mortars. Ground expanded perlite (EP) is used as a source of alumino-silicate and sodium hydroxide (NaOH=5, 10, 15, and 20M) is used as alkaline medium for geopolymer synthesis. RSFs were added to the mortar mixtures in four different volume fractions (0, 0.5, 1.0, and 1.5% of the total volume of mortar). The unit weight, ultrasound pulse velocity, flexural and compressive strength of expanded perlite based geopolymer mortar (EPGM) mixtures were determined. The microstructures of selected EPGMs were examined by scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS) analyses. The optimum molarity of sodium hydroxide solution was found to be 15M for geopolymer synthesis by EP. The test results revealed that RSFs can be successfully used for fibre-reinforced geopolymer production.

Synthesis and mechanical properties of flax fabric reinforced geopolymer composites

  • Assaedi, Hasan S.;Alomayri, Thamer S.;Shaikh, Faiz U.A.;Low, It-Meng
    • Advances in materials Research
    • /
    • v.3 no.3
    • /
    • pp.151-161
    • /
    • 2014
  • Geopolymer composites reinforced with different layers of woven flax fabric are fabricated using lay- up technique. Mechanical properties, such as flexural strength, flexural modulus and fracture toughness of geopolymer composites reinforced with 2.4, 3 and 4.1 wt% flax fibres are studied. The fracture surfaces of the composites are also examined using scanning electron microscopy. The results show that all the mechanical properties of the composites are improved by increasing the flax fibre contents. It is also found that the mechanical properties of flax fabric reinforced geopolymer composites are superior to pure geopolymer matrix. Micro-structural analysis of fracture surface of the composites indicated evidence of various toughening mechanisms by flax fabrics in the composites.

Characterization and Early Age Physical Properties of Ambient Cured Geopolymer Mortar Based on Class C Fly Ash

  • Kotwal, Ashley Russell;Kim, Yoo Jae;Hu, Jiong;Sriraman, Vedaraman
    • International Journal of Concrete Structures and Materials
    • /
    • v.9 no.1
    • /
    • pp.35-43
    • /
    • 2015
  • The critical element for sustainable growth in the construction industry is the development of alternative cements. A new technological process called geopolymerization provides an innovative solution, and the presence of aluminum and silicon oxides in fly ash has encouraged its use as a source material. Many previous investigations have involved curing the binder in a heated environment. To reduce energy consumption during the synthesis of geopolymers, the present study investigated the properties of ambient cured geopolymer mortar at early ages. An experimental program was executed to establish a relationship between the activator composition and the properties of geopolymer mortar in fresh and hardened states. Concentrations of sodium hydroxide and sodium silicate were ascertained that are advantageous for constructability and mechanical behavior. Scanning electron microscopy, energy dispersive X-ray spectroscopy and X-ray diffraction techniques were also used to characterize the material. Test results indicate that there is potential for the concrete industry to use fly ash based geopolymer as an alternative to portland cement.

Geopolymer composite binders of soda-lime glass (GP) & Ground Granulated Blast Furnance Slag (GGBS): The strength & microstructure

  • Sasui, Sasui;Kim, Gyu Yong;Lee, Sang Kyu;Son, minjae;Hwang, Eui Chul;Nam, Jeong Soo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2019.11a
    • /
    • pp.19-20
    • /
    • 2019
  • This study investigated the possibility of strength development by incorporating the slighly coarser soda-lime glass powder (GP) with 0-100 wt.% of Ground Granulated Blast Furnace Slag (GGBS) to synthesis GGBS based geopolymer. Compressive strength, water absorption & apparent porosity, were experimentally determined. To determine the homogeneity of mix, the microstructure & elemental composition of samples were studied using SEM-EDS. Study reveals the improvement in strength and reduction in porosity for the samples containing up to 30% GP. Furthermore, the microstructure analyses confirmed the development of denser and compact structure with the incorporation of glass powder up to 30%.

  • PDF

Reactivity of aluminosilicate materials and synthesis of geopolymer mortar under ambient and hot curing condition

  • Zafar, Idrees;Tahir, Muhammad Akram;Hameed, Rizwan;Rashid, Khuram;Ju, Minkwan
    • Advances in concrete construction
    • /
    • v.13 no.1
    • /
    • pp.71-81
    • /
    • 2022
  • Aluminosilicate materials as precursors are heterogenous in nature, consisting of inert and partially reactive portion, and have varying proportions depending upon source materials. It is essential to assess the reactivity of precursor prior to synthesize geopolymers. Moreover, reactivity may act as decisive factor for setting molar concentration of NaOH, curing temperature and setting proportion of different precursors. In this experimental work, the reactivities of two precursors, low calcium (fly ash (FA)) and high calcium (ground granulated blast furnace slag (GGBS)), were assessed through the dissolution of aluminosilicate at (i) three molar concentrations (8, 12, and 16 M) of NaOH solution, (ii) 6 to 24 h dissolution time, and (iii) 20-100℃. Based on paratermeters influencing the reactivity, different proportions of ternary binders (two precursors and ordinary cement) were activated by the combined NaOH and Na2SiO3 solutions with two alkaline activators to precursor ratios, to synthesize the geopolymer. Reactivity results revealed that GGBS was 20-30% more reactive than FA at 20℃, at all three molar concentrations, but its reactivity decreased by 32-46% with increasing temperature due to the high calcium content. Setting time of geopolymer paste was reduced by adding GGBS due to its fast reactivity. Both GGBS and cement promoted the formation of all types of gels (i.e., C-S-H, C-A-S-H, and N-A-S-H). As a result, it was found that a specified mixing proportion could be used to improve the compressive strength over 30 MPa at both the ambient and hot curing conditions.

Synthesis of Mullite Powders by the Geopolymer Technique (Geopolymer Technique에 의한 Mullite 분말의 합성)

  • Son, Se-Gu;Lee, Ji-Hyeon;Lee, Jeong-Mi;Kim, Young-Do
    • Journal of the Korean Ceramic Society
    • /
    • v.45 no.5
    • /
    • pp.303-308
    • /
    • 2008
  • Mullite precursors were synthesized with aluminosilicate gels from mixture of aluminum nitrate and sodium orthosilicate by the geopolymer technique at ambient temperature. Then, the gel was heat-treated in air up to $1200^{\circ}C$ at intervals of $100^{\circ}C$. Raw and heat-treated gels were characterized by TG-DTA, XRD, FTIR, $^{29}Si$ MAS-NMR, TEM. The result to examine the crystallization of behavior though DTA, the synthesized precursors were crystallized in the temperature range from $950^{\circ}C$ to $1050^{\circ}C$. The XRD results showed that the gel compositions were begun to crystallize at various temperature. Also, it was found that the precursors of M-4 begun to crystallize at about $950^{\circ}C$. The M-4 XRD peaks were characterized better than $M-1{\sim}M-3$ at $1000^{\circ}C$. The formation temperature of mullite in this study is much lower than that of previous sol-gel methods, which crystallized at up of $1200^{\circ}C$. TEM investigations revealed that the sample with 10 nm particle size was obtained via heat-treated at $1000^{\circ}C$ for M-4.

Low Temperature Synthesis of Forsterite Powders by the Geopolymer Technique (지오폴리머 기술에 의한 포스테라이트 분말의 저온합성)

  • Son, Se-Gu;Lee, Ji-Hyeon;Lee, Sang-Hoon;Kim, Young-Do
    • Journal of the Korean Ceramic Society
    • /
    • v.46 no.3
    • /
    • pp.242-248
    • /
    • 2009
  • Forsterite is a crystalline magnesium silicate with chemical formula $Mg_2SiO_4$, which has extremely low electrical conductivity that makes it an ideal substrate material for electronics. In this study, forsterite precursors were synthesized with magnesium silicate gels from the mixture of magnesium nitrate solution and various sodium silicate solution by the geopolymer technique. Precursors and heattreated powders were characterized by thermogravimetrical differential thermal analyzer(TG-DTA), X-ray diffractometer(XRD), scanning electron microscopy(SEM), Si magic angle spinning nuclear magnetic resonance(MAS-NMR), transmission electron microscopy(TEM). As the result of analysis about the crystallization behavior by DTA, the synthesized precursors were crystallized in the temperature range of $700^{\circ}C$ to $900^{\circ}C$. The XRD results showed that the gel composition began to crystallize at various temperature. Also, it was found that the sodium orthosilicate based precursors(named as 'FO') began to crystallize at above $550^{\circ}C$. The FO peaks were much stronger than sodium silicate solution based precursors(named as 'FW'), sodium metasilicate based precursors(named as 'FM') at $800^{\circ}C$. TEM investigation revealed that the 100nm particle sized sample was obtained from FO by heating up to $800^{\circ}C$.

Effect of Particle Size and Unburned Carbon Content of Fly Ash from Hadong Power Plant on Compressive Strength of Geopolymers (하동화력발전소 비산재의 입도크기와 미연탄소 함량이 지오폴리머의 압축강도에 미치는 영향)

  • Kang, Nam-Hee;Chon, Chul-Min;Jou, Hyeong-Tae;Lee, Sujeong
    • Korean Journal of Materials Research
    • /
    • v.23 no.9
    • /
    • pp.510-516
    • /
    • 2013
  • Fly ash is one of the aluminosilicate sources used for the synthesis of geopolymers. The particle size distribution of fly ash and the content of unburned carbon residue are known to affect the compressive strength of geopolymers. In this study, the effects of particle size and unburned carbon content of fly ash on the compressive strength of geopolymers have been studied over a compositional range in geopolymer gels. Unburned carbon was effectively separated in the $-46{\mu}m$ fraction using an air classifier and the fixed carbon content declined from 3.04 wt% to 0.06 wt%. The mean particle size ($d_{50}$) decreased from $22.17{\mu}m$ to $10.79{\mu}m$. Size separation of fly ash by air classification resulted in reduced particle size and carbon residue content with a collateral increase in reactivity with alkali activators. Geopolymers produced from carbon-free ash, which was separated by air classification, developed up to 50 % higher compressive strength compared to geopolymers synthesized from raw ash. It was presumed that porous carbon particles hinder geopolymerization by trapping vitreous spheres in the pores of carbon particles and allowing them to remain intact in spite of alkaline attack. The microstructure of the geopolymers did not vary considerably with compressive strength, but the highest connectivity of the geopolymer gel network was achieved when the Si/Al ratio of the geopolymer gel was 5.0.

Low Temperature Synthesis of Willemite Powder (Willemite 분말의 저온합성)

  • Son, Se-Gu;Lee, Ji-Hyeon;Lee, Jeong-Mi;Kim, Young-Do
    • Journal of the Korean Ceramic Society
    • /
    • v.45 no.7
    • /
    • pp.401-404
    • /
    • 2008
  • Willemite ($Zn_2SiO_4$) are a wide range of applications such as a phosphor host and an important crystalline phase in glass ceramics, electrical insulators, glazes, and pigments. In this study, Willemite precursors were synthesized with zinc silicate gels from mixture of zinc nitrate solution and various sodium silicate solution by the geopolymer technique. To examine the crystallization behavior, precursors were have been monitored by the XRD. A pure willemite phase was obtained at $900^{\circ}C$. TEM investigations revealed that the sample with 50 nm particle size was obtained via heat-treated at $900^{\circ}C$ for W-3.

Valorization of bottom ash with geopolymer synthesis: Optimization of pastes and mortar

  • Froener, Muriel S.;Longhi, Marlon A.;de Souza, Fabiana;Rodriguez, Erich D.;Kirchheim, Ana Paula
    • Advances in concrete construction
    • /
    • v.14 no.1
    • /
    • pp.1-13
    • /
    • 2022
  • Due to the physical-chemical characteristics of some bottom ash (BA), there are technical, economic and environmental limitations to find a destination that will add value to it. In Brazil, this residue is eventually used for filling coal extraction pits or remains in sedimentation ponds, creating a susceptible panorama to environmental issues. The geopolymers binders are one of the alternatives to the proper use high amounts of these materials. In this work, geopolymeric binder pastes were produced with BA mixed to activators with different alkali contents (expressed as %Na2O), as well as the incorporation of soluble silicates (Ms content). The production of binary geopolymeric pastes based on the use of two industrial wastes: fluid catalytic cracking (FCC) and aluminum anodizing sludge (AAS), was also assessed. The content in mass of BA/FCC and BA/AAS ranged from 100/0, 90/10; 80/20 and 70/30. Systems with soluble silicates as activator in a molar ratio SiO2/Na2O of 1.0 (Ms = 1.0) and Na2O content of 15%, showed the best results of mechanical strength (42 MPa at day 28th). The improvement is up to 5X when compared to NaOH based systems. For systems with partial replacement of BA of 10% of AAS and 20% of FCC (80/20), the presence of soluble silicates was also effective to increase compressive strength.