DOI QR코드

DOI QR Code

The comparison between NBD test results and SCB test results using experimental test and numerical simulation

  • Fu, Jinwei (School of Civil Engineering and Transportation, North China University of Water Resources and Electric Power) ;
  • Sarfarazi, Vahab (Department of Mining Engineering, Hamedan University of Technology) ;
  • Haeri, Hadi (State Key Laboratory for Deep Geomechanics and Underground Engineering) ;
  • Naderi, K. (State Key Laboratory for Deep Geomechanics and Underground Engineering) ;
  • Fatehi Marji, Mohammad (Mine Exploitation Engineering Department, Faculty of Mining and Metallurgy, Institution of Engineering, Yazd University) ;
  • Guo, Mengdi (School of Civil Engineering and Transportation, North China University of Water Resources and Electric Power)
  • Received : 2020.04.05
  • Accepted : 2022.01.06
  • Published : 2022.01.25

Abstract

The two, NBD and SCB tests using gypsum circular discs each containing a single notch have been experimentally accomplished in a rock mechanics laboratory. These specimens have also been numerically modelled by a two-dimensional particle flow which is based on Discrete Element Method (DEM). Each testing specimen had a thickness of 5 cm with 10 cm in diameter. The specimens' lengths varied as 2, 3, and 4 cm; and the specimens' notch angles varied as 0°, 45° and 90°. Similar semi-circular gypsum specimens were also prepared each contained one edge notch with angles 0° or 45°. The uniaxial testing machine was used to perform the experimental tests for both NBD and SCB gypsum specimens. At the same time, the numerical simulation of these tests were performed by PFC2D. The experimental results showed that the failure mechanism of rocks is mainly affected by the orientations of joints with respect to the loading directions. The failure mechanism and fracturing patterns of the gypsum specimens are directly related to the final failure loading. It has been shown that the number of induced tensile cracks showing the specimens' tensile behavior, and increases by decreasing the length and angle of joints. It should be noted that the fracture toughness of rocks' specimens obtained by NBD tests was higher than that of the SCB tests. The fracture toughness of rocks usually increases with the increasing of joints' angles but increasing the joints' lengths do not change the fracture toughness. The numerical solutions and the experimental results for both NDB and SCB tests give nearly similar fracture patterns during the loading process.

Keywords

References

  1. Akbardoost, J., Ghadirian H.R. and Sangsefidi, M. (2017), "Calculation of the crack tip parameters in the holed cracked flattened Brazilian disk (HCFBD) specimens under wide range of mixed mode I/II loading", Fatig. Fract. Eng. Mater. Struct., 40(9),1416-1427. https://doi.org/10.1111/ffe.12585.
  2. Alkilicgil, C. (2010), "Development of specimen geometries for mode I fracture toughness testing with disc type rock specimens", Ph.D. Dissertation of Philosophy, Middle East Technical University.
  3. Atkinson, C., Smelser, R.E. and Sanchez, J. (1982), "Combined mode fracture via the cracked Brazilian disk test", Int. J. Fract., 18(4), 279-291. https://doi.org/10.1007/BF00015688.
  4. Bergmann, G., and Vehoff, H. (1994), "Precracking of NiAl single crystals by compression-compression fatigue and its application to fracture toughness testing", Scripta Metallurgica et Materialia, 30(8). https://doi.org/10.1016/0956-716X(94)90539-8.
  5. Boumaaza, M., Bezazi, A., Bouchelaghem, H., Benzennache, N., Amziane, S. and Scarpa, F. (2017), "Behavior of pre-cracked deep beams with composite materials repairs", Struct. Eng. Mech., 63(5), 575-583. https://doi.org/10.12989/sem.2017.63.5.575.
  6. Chang, S.H., Lee, C.I. and Jeon, S. (2002), "Measurement of rock fracture toughness under modes I and II and mixed-mode conditions by using disc-type specimens", Eng. Geol., 66(1-2), 79-97. https://doi.org/10.1016/S0013-7952(02)00033-9.
  7. Chen, F., Cao, P., Rao, Q.H. and Sun, Z.Q. (2003), "Use of double edge-cracked Brazilian disk geometry for compression-shear fracture investigation of rock", J. Central South Univ. Tech., 10(3), 211-215. https://doi.org/10.1007/s11771-003-0011-0.
  8. Chong, K. and Kuruppu, M.D. (1984), "New specimen for fracture toughness determination for rock and other materials", Int. J. Fract., 26(2), R59-R62. https://doi.org/10.1007/BF01157555.
  9. Civalek, O . and Avcar, M. (2020), "Free vibration and buckling analyses of CNT reinforced laminated non-rectangular plates by discrete singular convolution method", Eng. Comput., 1-33. https://doi.org/10.1007/s00366-020-01168-8.
  10. Cui, Z.D., Liu, D.A., An, G.M., Sun, B. and Zhou, M. (2010), "A comparison of two ISRM suggested chevron notched specimens for testing mode-I rock fracture toughness", Int. J. Rock Mech. Min. Sci., 47(5), 871-876. https://doi.org/10.1016/j.ijrmms.2009.12.015.
  11. Cundall, P.A. and Potyondy, D.O. (2004), "A bonded-particle model for rock", Int. J. Rock Mech. Min. Sci., 41(8), 1329-1364. https://doi.org/10.1016/j.ijrmms.2004.09.011
  12. Cundall, P.A. and Strack, O.D. (1979), "A discrete numerical model for granular assemblies", Geotech., 29(1), 47-65. https://doi.org/10.1680/geot.1979.29.1.47
  13. Dai, F. and Xia, K.W. (2013), "Laboratory measurements of the rate dependence of the fracture toughness anisotropy of Barre granite", Int. J. Rock Mech. Min. Sci., 60, 57-65. https://doi.org/10.1016/j.ijrmms.2012.12.035.
  14. Dwivedi, R.D., Soni, A.K., Goel, R.K. and Dube, A.K. (2000), "Fracture toughness of rocks under sub-zero temperature conditions", Int. J. Rock Mech. Min. Sci., 37(8), 1267-1275. https://doi.org/10.1016/S1365-1609(00)00051-4.
  15. Evans, A.G. (1972), "A method for evaluating the time-dependent failure characteristics of brittle materials-and its application to polycrystalline alumina", J. Mater. Sci., 7(10), 1137-1146. https://doi.org/10.1007/BF00550196.
  16. Ghazvinian, A., Sarfarazi, V., Schubert, W. and Blumel, M. (2012), "A study of the failure mechanism of planar non-persistent open joints using PFC2D", Rock Mech. Rock Eng., 45(5), 677-693. https://doi.org/10.1007/s00603-012-0233-2.
  17. Guo, H., Aziz, N.I. and Schmidt, L.C. (1993), "Rock fracture-toughness determination by the Brazilian test", Eng. Geol., 33(3), 177-188. https://doi.org/10.1016/0013-7952(93)90056-I.
  18. Haeri, H., Sarfarazi, V., Yazdani, M., Shemirani, A.B. and Hedayat, A. (2018), "Experimental and numerical investigation of the center-cracked horseshoe disk method for determining the mode I fracture toughness of rock-like material", Rock Mech. Rock Eng., 51(1), 173-185. https://doi.org/10.1007/s00603-017-1310-3.
  19. Haeri, H., Shahriar, K., Marji, M.F. and Moarefvand, P. (2014), "Experimental and numerical study of crack propagation and coalescence in pre-cracked rock-like disks", Int. J. Rock Mech. Min. Sci., 67, 20-28. https://doi.org/10.1016/j.ijrmms.2014.01.008.
  20. Iqbal, M.J. and Mohanty, B. (2007), "Experimental calibration of ISRM suggested fracture toughness measurement techniques in selected brittle rocks", Rock Mech. Rock Eng., 40(5), 453-475. https://doi.org/10.1007/s00603-006-0107-6.
  21. Kataoka, M., Obara, Y. and Kuruppu, M. (2015), "Estimation of fracture toughness of anisotropic rocks by semi-circular bend (SCB) tests under water vapor pressure", Rock Mech. Rock Eng., 48(4), 1353-1367. https://doi.org/10.1007/s00603-014-0665-y.
  22. Khan, K. and Al-Shayea, N.A. (2000), "Effect of specimen geometry and testing method on mixed mode I-II fracture toughness of a limestone rock from Saudi Arabia", Rock Mech. Rock Eng., 33(3), 179-206. https://doi.org/10.1007/s006030070006.
  23. Kuruppu, M.D. (1997), "Fracture toughness measurement using chevron notched semi-circular bend specimen", Int. J. Fract., 86(4), L33-L38.
  24. Kuruppu, M.D. (1998), "Stress intensity factors of chevron-notched semi-circular specimen", APCOM 98 Computer Applications in the Mineral Industries International Symposium, 111-112.
  25. Lee, J.W. and Lee, J.Y. (2018), "A transfer matrix method for in-plane bending vibrations of tapered beams with axial force and multiple edge cracks", Struct. Eng. Mech., 66(1), 125-138. https://doi.org/10.12989/sem.2018.66.1.125.
  26. Monfared, M.M. (2017), "Mode III SIFs for interface cracks in an FGM coating-substrate system", Struct. Eng. Mech., 64(1), 71-79. https://doi.org/10.12989/sem.2017.64.1.071.
  27. Nabil, B., Abdelkader, B., Miloud, A. and Noureddine, B. (2017), "On the mixed-mode crack propagation in FGMs plates: Comparison of different criteria", Struct. Eng. Mech., 61(3), 371-379. https://doi.org/10.12989/sem.2017.61.3.371.
  28. Nasseri, M.H.B. and Mohanty, B. (2008), "Fracture toughness anisotropy in granitic rocks", Int. J. Rock Mech. Min. Sci., 45(2), 167-193. https://doi.org/10.1016/j.ijrmms.2007.04.005.
  29. Nezhad, M.M., Fisher, Q.J., Gironacci, E. and Rezania, M. (2018), "Experimental study and numerical modeling of fracture propagation in shale rocks during Brazilian disk test", Rock Mech. Rock Eng., 51(6), 1755-1775. https://doi.org/10.1007/s00603-018-1429-x.
  30. Ouchterlony, F. (1982), "Review of fracture toughness testing of rock", SM Archiv., 7, 131-211.
  31. Ouchterlony, F. (1988) "ISRM commission on testing methods: Suggested methods for determining fracture toughness of rock", Int. J. Rock Mech. Min. Sci. Geomech. Abstr., 25, 71-96
  32. Ouchterlony, F. (1991), "Experiences from fracture toughness testing of rock: According to the ISRM suggested methods", SveDeFo.
  33. Pan, B., Gao, Y. and Zhong, Y. (2014), "Theoretical analysis of overlay resisting crack propagation in old cement concrete pavement", Struct. Eng. Mech, 52(4), 829-841. https://doi.org/10.12989/sem.2014.52.4.829.
  34. Ramadoss, P. and Nagamani, K. (2013), "Stress-strain behavior and toughness of high-performance steel fiber reinforced concrete in compression", Comput. Concrete, 11(2), 149-167. https://doi.org/10.12989/cac.2013.11.2.149.
  35. Rezaiee-Pajand, M. and Gharaei-Moghaddam, N. (2018), "Two new triangular finite elements containing stable open cracks", Struct. Eng. Mech., 65(1), 99-110. https://doi.org/10.12989/sem.2018.65.1.099.
  36. Shi, X., Yao, W., Xia, K., Tang, T. and Shi, Y. (2019), "Experimental study of the dynamic fracture toughness of anisotropic black shale using notched semi-circular bend specimens", Eng. Fract. Mech., 205, 136-151. https://doi.org/10.1016/j.engfracmech.2018.11.027.
  37. Shiryaev, A.M. and Kotkis, A.M. (1983), "Methods for determining fracture toughness of brittle porous materials", Indust. Lab., 48(9), 917-918.
  38. Tutluoglu, L. and Keles, C. (2011), "Mode I fracture toughness determination with straight notched disk bending method", Int. J. Rock Mech. Min. Sci., 48(8), 1248-1261. https://doi.org/10.1016/j.ijrmms.2011.09.019.
  39. Tutluoglu, L. and Keles, C. (2012), "Effects of geometric factors on mode I fracture toughness for modified ring tests", Int. J. Rock Mech. Min. Sci., 51, 149-161. https://doi.org/10.1016/j.ijrmms.2012.02.004.
  40. Wang, J., Huang, S., Guo, W., Qiu, Z. and Kang, K. (2020), "Experimental study on fracture toughness of a compacted clay using semi-circular bend specimen", Eng. Fract. Mech., 224, 106814. https://doi.org/10.1016/j.engfracmech.2019.106814.
  41. Wang, J., Xie, L., Xie, H., Ren, L., He, B., Li, C. and Gao, C. (2016), "Effect of layer orientation on acoustic emission characteristics of anisotropic shale in Brazilian tests", J. Nat. Gas Sci. Eng., 36, 1120-1129. https://doi.org/10.1016/j.jngse.2016.03.046.
  42. Wei, M.D., Dai, F., Xu, N.W. and Zhao, T. (2018), "Experimental and numerical investigation of cracked chevron notched Brazilian disc specimen for fracture toughness testing of rock", Fatig. Fract. Eng. Mater. Struct., 41(1), 197-211. https://doi.org/10.1111/ffe.12672.
  43. Wei, M.D., Dai, F., Xu, N.W., Liu, Y. and Zhao, T. (2018), "A novel chevron notched short rod bend method for measuring the mode I fracture toughness of rocks", Eng. Fract. Mech., 190, 1-15. https://doi.org/10.1016/j.engfracmech.2017.11.041.
  44. Wei, M.D., Dai, F., Xu, N.W., Xu, Y. and Xia, K. (2015), "Three-dimensional numerical evaluation of the progressive fracture mechanism of cracked chevron notched semi-circular bend rock specimens", Eng. Fract. Mech., 134, 286-303. https://doi.org/10.1016/j.engfracmech.2014.11.012.
  45. Wei, M.D., Dai, F., Xu, N.W., Zhao, T. and Liu, Y. (2017), "An experimental and theoretical assessment of semi-circular bend specimens with chevron and straight-through notches for mode I fracture toughness testing of rocks", Int. J. Rock Mech. Min. Sci., 99, 28-38. https://doi.org/10.1016/j.ijrmms.2017.09.004.
  46. Xu, N.W., Dai, F., Wei, M.D., Xu, Y. and Zhao, T. (2016), "Numerical observation of three-dimensional wing cracking of cracked chevron notched Brazilian disc rock specimen subjected to mixed mode loading", Rock Mech. Rock Eng., 49(1), 79-96. https://doi.org/10.1007/s00603-015-0736-8.
  47. Xu, Y., Dai, F., Zhao, T., Xu, N.W. and Liu, Y. (2016), "Fracture toughness determination of cracked chevron notched Brazilian disc rock specimen via Griffith energy criterion incorporating realistic fracture profiles", Rock Mech. Rock Eng., 49(8), 3083-3093. https://doi.org/10.1007/s00603-016-0978-0.
  48. Yao, W. and Xia, K. (2019), "Dynamic notched semi-circle bend (NSCB) method for measuring fracture properties of rocks: Fundamentals and applications", J. Rock Mech. Geotech. Eng., 11(5), 1066-1093. https://doi.org/10.1016/j.jrmge.2019.03.003.
  49. Yaylaci, M. (2016), "The investigation crack problem through numerical analysis", Struct. Eng. Mech., 57(6), 1143-1156. https://doi.org/10.12989/sem.2016.57.6.1143.
  50. Yaylaci, M. and Avcar, M. (2020), "Finite element modeling of contact between an elastic layer and two elastic quarter planes", Comput. Concrete, 26(2), 107-114. https://doi.org/10.12989/cac.2020.26.2.107.
  51. Yaylaci, M., Bayrak, M.C . and Avcar, M. (2019), "Finite element modeling of receding contact problem", Int. J. Eng. Appl. Sci., 11(4), 468-475. https://doi.org/10.24107/ijeas.646718.
  52. Yaylaci, M., Terzi, C. and Avcar, M. (2019a), "Numerical analysis of the receding contact problem of two bonded layers resting on an elastic half plane", Struct. Eng. Mech., 72(6), 775-783. https://doi.org/10.12989/sem.2019.72.6.775.
  53. Yin, T., Wu, Y., Li, Q., Wang, C. and Wu, B. (2020), "Determination of double-K fracture toughness parameters of thermally treated granite using notched semi-circular bending specimen", Eng. Fract. Mech., 226, 106865. https://doi.org/10.1016/j.engfracmech.2019.106865.
  54. Yu, K. and Lu, Z. (2015), "Influence of softening curves on the residual fracture toughness of post-fire normal-strength concrete", Comput. Concrete, 15(2), 199-213. https://doi.org/10.12989/cac.2015.15.2.199.
  55. Zhou, Y.X., Xia, K., Li, X.B., Li, H.B., Ma, G.W., Zhao, J., Zhou, Z.L. and Dai, F. (2012), "Suggested methods for determining the dynamic strength parameters and mode-I fracture toughness of rock materials", Int. J. Rock Mech. Min. Sci., 49, 105-112. https://doi.org/10.1007/978-3-319-07713-0_3.