DOI QR코드

DOI QR Code

One-pot Synthesis of Multifunctional Mn3O4/mesoporous Silica Core/shell Nanoparticles for Biomedical Applications

  • Lee, Dong Jun (School of Chemical and Biological Engineering, Seoul National University) ;
  • Lee, Nohyun (School of Advanced Materials Engineering, Kookmin University) ;
  • Lee, Ji Eun (School of Chemical Engineering, Chonnam National University)
  • Received : 2021.12.23
  • Accepted : 2022.01.07
  • Published : 2022.02.10

Abstract

Multifunctional nanomaterials based on mesoporous silica nanoparticles (MSN) and metal oxide nanocrystals are among the most promising materials for theragnosis because of their ease of modification and high biocompatibility. However, the preparation of multifunctional nanoparticles requires time-consuming multistep processes. Herein, we report a simple one-pot synthesis of multifunctional Mn3O4/mesoporous silica core/shell nanoparticles (Mn3O4@mSiO2) involving the temporal separation of core formation and shell growth. This simple procedure greatly reduces the time and effort required to prepare multifunctional nanoparticles. Despite the simplicity of the process, the properties of nanoparticles are not markedly different from those of core/shell nanoparticles synthesized by a previously reported multistep process. The Mn3O4@mSiO2 nanoparticles are biocompatible and have potential for use in optical imaging and magnetic resonance imaging.

Keywords

Acknowledgement

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (No. 2021R1A2C1011317) and Chonnam National University (Grant number : 2021-2505).

References

  1. Q. He, S. Guo, Z. Qian, and X. Chen, Development of individualized anti-metastasis strategies by engineering nanomedicines, Chem. Soc. Rev., 44, 6258-6286 (2015). https://doi.org/10.1039/C4CS00511B
  2. B. G. Cha and J. Kim, Functional mesoporous silica nanoparticles for bio-imaging applications, Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol., 11, e1515 (2019).
  3. B. Yang, Y. Chen and J. Shi, Exogenous/endogenous-triggered mesoporous silica cancer nanomedicine, Adv. Healthc. Mater., 7, 1800268 (2018). https://doi.org/10.1002/adhm.201800268
  4. E. Rastegari, Y.-J. Hsiao, W.-Y. Lai, Y.-H. Lai, T.-C. Yang, S.-J. Chen, P.-I Huang, S.-H. Chiou, C.-Y. Mou and Y. Chien, An update on mesoporous silica nanoparticle applications in nanomedicine, Pharmaceutics, 13, 1067 (2021). https://doi.org/10.3390/pharmaceutics13071067
  5. J. Kim, H. S. Kim, N. Lee, T. Kim, H. Kim, T. Yu, I. C. Song, W. K. Moon, and T. Hyeon, Multifunctional uniform nanoparticles composed of a magnetite nanocrystal core and a mesoporous silica shell for magnetic resonance and fluorescence imaging and for drug delivery, Angew. Chem. Int. Ed., 47, 8438-8141 (2008). https://doi.org/10.1002/anie.200802469
  6. D. E. Lee, H. Koo, I.-C. Sun, H. J. Ryu, K. Kim, and I. C. Kwon, Multifunctional nanoparticles for multimodal imaging and theragnosis, Chem. Soc. Rev., 41, 2656-2672 (2012). https://doi.org/10.1039/C2CS15261D
  7. J. E. Lee, N. Lee, H. Kim, J. Kim, S. H. Choi, J. H. Kim, T. Kim, I. C. Song, S. P. Park, W. K. Moon, and T. Hyeon, Uniform mesoporous dye-doped silica nanoparticles decorated with multiple magnetite nanocrystals for simultaneous enhanced magnetic resonance imaging, fluorescence imaging, and drug delivery, J. Am. Chem. Soc., 132, 552-557 (2010). https://doi.org/10.1021/ja905793q
  8. J. Park, K. An, Y. Hwang, J. Park, H. Noh, J. Kim, J. Park, N. Hwang, and T. Hyeon, Ultra-large-scale syntheses of monodisperse nanocrystals, Nat. Mater., 3, 891-895 (2004). https://doi.org/10.1038/nmat1251
  9. M. Worden, M. A. Bruckman, M. H. Kim, N. F. Steinmetz, J. M. Kikkawa, C. LaSpina, and T. Hegmann, Aqueous synthesis of polyhedral "brick-like" iron oxide nanoparticles for hyperthermia and T2 MRI contrast enhancement, J. Mater. Chem. B, 3, 6877-6884 (2015). https://doi.org/10.1039/C5TB01138H
  10. A. Guerrero-Martinez, J. Perez-Juste, and L. M. Liz-Marzan, Recent progress on silica coating of nanoparticles and related nanomaterials, Adv. Mater., 22, 1182-1195 (2010). https://doi.org/10.1002/adma.200901263
  11. H. B. Na, J. H. Lee, K. An, Y. I. Park, M. Park, I. S. Lee, D.-H. Nam, S. T. Kim, S,-H. Kim, S.-W. Kim, K.-H. Lim, K.-S. Kim, S.-O. Kim, and T. Hyeon, Development of a T1 contrast agent for magnetic resonance imaging using MnO nanoparticles, Angew. Chem. Int. Ed., 46, 5397-5401 (2007). https://doi.org/10.1002/anie.200604775
  12. P. S. Mueller, C. P. Parker, and S. C. Larsen, One-pot synthesis of iron oxide mesoporous silica core/shell nanocomposites, Micropor. Mesopor. Mat., 204, 173-179(2015). https://doi.org/10.1016/j.micromeso.2014.11.009
  13. X. Li, L. Zhou, J. Gao, H. Miao, H. Zhang, and J. Xu, Synthesis of Mn3O4 nanoparticles and their catalytic applications in hydrocarbon oxidation, Powder Technol., 190, 324-326 (2009). https://doi.org/10.1016/j.powtec.2008.08.010
  14. K.-C. Kao, C.-H. Lin, T.-Y. Chen, Y.-H. Liu, and C.-Y. Mou, A general method for growing large area mesoporous silica thin films on flat substrates with perpendicular nanochannels, J. Am. Chem. Soc., 137, 3779-3782 (2015). https://doi.org/10.1021/jacs.5b01180
  15. T. Kim, E. Momin, J. Choi, K. Yuan, H. Zaidi, J. Kim, M. Park, N. Lee, M. T. McMahon, A. Quinones-Hinojosa, J. W. M. Bulte, T. Hyeon, and A. A. Gilad, Mesoporous silica-coated hollow manganese oxide nanoparticles as positive T1 contrast agents for labeling and MRI tracking of adipose-derived mesenchymal stem cells, J. Am. Chem. Soc., 133, 2955-2961 (2011). https://doi.org/10.1021/ja1084095
  16. N. Lang, and A. Tuel, A fast and efficient ion-exchange procedure to remove surfactant molecules from MCM-41 materials, Chem. Mater., 16, 1961-1966 (2004). https://doi.org/10.1021/cm030633n
  17. J. Fan, C. Yu, T. Gao, J. Lei, B. Tian, L. Wang, Q. Luo, B. Tu, W. Zhou, and D. Zhao, Cubic mesoporous silica with large controllable entrance sizes and advanced adsorption properties, Angew. Chem. Int. Ed., 42, 3146-3150 (2003). https://doi.org/10.1002/anie.200351027