DOI QR코드

DOI QR Code

Analysis of Electrochemical Properties of Sulfide All-Solid-State Lithium Ion Battery Anode Material Using Amorphous Carbon-Removed Graphite

비정질 탄소가 제거된 흑연을 이용한 황화물계 전고체 리튬이온전지 음극소재 전기화학적 특성 분석

  • Choi, Jae Hong (Department of Graphic Arts Information Engineering, Pukyong National University) ;
  • Oh, Pilgun (Department of Graphic Arts Information Engineering, Pukyong National University)
  • 최재홍 (부경대학교 인쇄정보공학과) ;
  • 오필건 (부경대학교 인쇄정보공학과)
  • Received : 2021.11.10
  • Accepted : 2022.01.07
  • Published : 2022.02.10

Abstract

Graphite has been used as an anode material for lithium-ion batteries for the past 30 years due to its low de-/lithiation voltage, high theoretical capacity of 372 mAh/g, low price, and long life properties. Recently, all-solid-state lithium-ion batteries (ASSLB), which are composed of inorganic solid materials with high stability, have received great attention as electric vehicles and next-generation energy storage devices, but research works on graphite that works well for ASSLB systems are insufficient. Therefore, we induced the performance improvement of ASSLB anode electrode graphite material by removing the amorphous carbon present in the carbon material surface, acting as a resistive layer from the graphite. As a result of X-ray diffraction (XRD) analysis using heat treated graphite in air at 400, 500, and 600 ℃, the full width at half maximum (FWHM) at (002) peak was reduced compared to that of bare graphite, indicating that the crystallinity of graphite was improved after heat treatment. In addition, the discharge capacity, initial coulombic efficiency (ICE) and cycle stability increased as the crystallinity of graphite increased after heat treatment. In the case of graphite annealed in air at 500 ℃, the high capacity retention rate of 331.1 mAh/g and ICE of 86.2% and capacity retention of 92.7% after 10-cycle measurement were shown.

흑연은 낮은 탈/리튬화 전압, 372 mAh/g의 높은 이론 용량, 낮은 가격 및 긴 수명 특성을 가져 지난 30년 동안 리튬이 온전지 음극 재료로 활용되었다. 최근 무기 고체 재료로 구성되어 높은 안정성을 가지는 전고체 리튬이온전지는 전기자동차 및 차세대 에너지 저장 장치로 엄청난 주목을 받고 있지만, 전고체 리튬이온전지 시스템에 잘 구동되는 흑연 연구는 부족한 실정이다. 그래서 우리는 탄소재료 표면에 존재하여 저항층으로 작용하는 비정질 탄소를 흑연으로부터 제거하여 흑연의 전기전도도 향상을 통해 황화물계 전고체 전지 음극 흑연 재료의 성능 향상을 유도했다. 400, 500 및 600 ℃ 공기 열처리된 흑연의 X-ray diffraction (XRD) 분석 결과, (002) 피크 반치폭(FWHM)이 bare 흑연보다 줄어들어 열처리 후 흑연의 결정성이 향상됨을 보였다. 또한 열처리 후 흑연의 결정성이 증가할수록 방전 용량, 초기 쿨롱효율(ICE) 및 수명 특성이 증가함을 확인했다. 500 ℃ 공기 열처리 한 흑연의 경우 331.1 mAh/g 및 ICE 86.2%와 10사이클 수명 측정 후 92.7%의 높은 용량 유지율을 나타내었다.

Keywords

Acknowledgement

이 논문은 부경대학교 자율창의학술연구비(2020년)에 의하여 연구되었음.

References

  1. J.-M. Tarascon and M. Armand, Issues and Challenges Facing Rechargeable Lithium Batteries, Nature, 414, 359-367 (2001). https://doi.org/10.1038/35104644
  2. M. Armand, and J.-M. Tarascon. Building Better Batteries, Nature, 451, 652-657 (2008). https://doi.org/10.1038/451652a
  3. J. Janek and W. G. Zeier, A Solid Future for Battery Development, Nat. Energy, 1, 1-4 (2016).
  4. W. Zhang, D. A. Weber, H. Weigand, T. Arlt, I. Manke, D. Schro der, R. Koerver, T. Leichtweiss, P. Hartmann, and W. G. Zeier, Interfacial Processes and Influence of Composite Cathode Microstructure Controlling the Performance of All-Solid-State Lithium Batteries, ACS Appl. Mater. Interfaces, 9, 17835-17845 (2017). https://doi.org/10.1021/acsami.7b01137
  5. F. Mizuno, A. Hayashi, K. Tadanaga, and M. Tatsumisago, Design of Composite Positive Electrode in All-Solid-State Secondary Batteries with Li2S-P2S5 Glass-Ceramic Electrolytes, J. Power Sources, 146, 711-714 (2005). https://doi.org/10.1016/j.jpowsour.2005.03.161
  6. D. Bresser, K. Hosoi, D. Howell, H. Li, H. Zeisel, K. Amine, and S. Passerini, Perspectives of Automotive Battery R&D in China, Germany, Japan, and the USA, J. Power Sources, 382, 176-178 (2018). https://doi.org/10.1016/j.jpowsour.2018.02.039
  7. D. Andre, H. Hain, P. Lamp, F. Maglia, and B. Stiaszny, Future High-Energy Density Anode Materials from an Automotive Application Perspective, J. Mater. Chem. A, 5, 17174-17198 (2017). https://doi.org/10.1039/C7TA03108D
  8. K. Takada, T. Inada, A. Kajiyama, H. Sasaki, S. Kondo, M. Watanabe, M. Murayama, and R. Kanno, Solid-State Lithium Battery with Graphite Anode, Solid State Ion., 158, 269-274 (2003). https://doi.org/10.1016/S0167-2738(02)00823-8
  9. Y. Seino, K. Takada, B.-C. Kim, L. Zhang, N. Ohta, H. Wada, M. Osada, and T. Sasaki, Synthesis of Phosphorous Sulfide Solid Electrolyte and All-Solid-State Lithium Batteries with Graphite Electrode, Solid State Ion., 176, 2389-2393 (2005). https://doi.org/10.1016/j.ssi.2005.03.026
  10. K. Kuratani, A. Sakuda, T. Takeuchi, and H. Kobayashi, Elucidation of Capacity Degradation for Graphite in Sulfide-Based All-Solid-State Lithium Batteries: A Void Formation Mechanism, ACS Appl. Energy Mater., 3, 5472-5478 (2020). https://doi.org/10.1021/acsaem.0c00460
  11. G. Maresca, A. Tsurumaki, N. Suzuki, T. Tsujimura, Y. Aihara, and M. Assunta Navarra, Improvement of Graphite Interfacial Stability in All-Solid-State Cells Adopting Sulfide Glassy Electrolytes, ChemElectroChem, 8, 689-696 (2021). https://doi.org/10.1002/celc.202001291
  12. J. H. Choi, J. Lee, S. M. Moon, Y.-T. Kim, H. Park, and C. Y. Lee, A Low-Energy Electron Beam Does Not Damage Single-Walled Carbon Nanotubes and Graphene, J. Phys. Chem. Lett., 7, 4739-4743 (2016). https://doi.org/10.1021/acs.jpclett.6b02185
  13. W. Zhou, Y. Ikuhara, W. Zhao, and J. Tang, A Transmission Electron Microscopy Study of Amorphization of Graphite by Mechanical Milling, Carbon, 33, 1177-1180 (1995). https://doi.org/10.1016/0008-6223(95)91247-5
  14. Z. Spitalsky, C. A. Krontiras, S. N. Georga, and C. Galiotis, Effect of Oxidation Treatment of Multiwalled Carbon Nanotubes on the Mechanical and Electrical Properties of Their Epoxy Composites, Compos. Part A Appl. Sci., 40, 778-783 (2009). https://doi.org/10.1016/j.compositesa.2009.03.008
  15. J. Asenbauer, T. Eisenmann, M. Kuenzel, A. Kazzazi, Z. Chen, and D. Bresser, The Success Story of Graphite as a Lithium-Ion Anode Material-Fundamentals, Remaining Challenges, and Recent Developments Including Silicon (Oxide) Composites, Sustain. Energy Fuels, 4, 5387-5416 (2020). https://doi.org/10.1039/D0SE00175A
  16. E. Peled, C. Menachem, D. Bar-Tow, and A. Melman, Improved Graphite Anode for Lithium-Ion Batteries Chemically: Bonded Solid Electrolyte Interface and Nanochannel Formation, J. Electrochem. Soc., 143, L4 (1996). https://doi.org/10.1149/1.1836372
  17. T. Placke, V. Siozios, R. Schmitz, S. Lux, P. Bieker, C. Colle, H.-W. Meyer, S. Passerini, and M. Winter, Influence of Graphite Surface Modifications on the Ratio of Basal Plane to "Non-Basal Plane" Surface Area and on the Anode Performance in Lithium Ion Batteries, J. Power Sources, 200, 83-91 (2012). https://doi.org/10.1016/j.jpowsour.2011.10.085
  18. S. W. Park, G. Oh, J. W. Park, Y. C. Ha, S. M. Lee, S. Y. Yoon, and B. G. Kim, Graphitic Hollow Nanocarbon as a Promising Conducting Agent for Solid-State Lithium Batteries, Small, 15, 1900235 (2019). https://doi.org/10.1002/smll.201900235
  19. R. Siburian, H. Sihotang, S. L. Raja, M. Supeno, and C. Simanjuntak, New Route to Synthesize of Graphene Nano Sheets, Orient. J. Chem., 34, 182-187 (2018). https://doi.org/10.13005/ojc/340120
  20. H. M. Albetran, Structural Characterization of Graphite Nanoplatelets Synthesized from Graphite Flakes, Preprints, 2020080325 (2020).
  21. J. Shin, W.-H. Ryu, K.-S. Park, and I.-D. Kim, Morphological Evolution of Carbon Nanofibers Encapsulating Snco Alloys and Its Effect on Growth of the Solid Electrolyte Interphase Layer, ACS Nano, 7, 7330-7341 (2013). https://doi.org/10.1021/nn403003b
  22. P. L. Moss, G. Au, E. J. Plichta, and J. P. Zheng, An Electrical Circuit for Modeling the Dynamic Response of Li-Ion Polymer Batteries, J. Electrochem. Soc., 155, A986 (2008). https://doi.org/10.1149/1.2999375
  23. J. Islam, H. Shao, M. M. R. Badal, K. M. Razeeb, and M. Jamal, Pencil Graphite as Electrode Platform for Free Chlorine Sensors and Energy Storage Devices, PloS one, 16, e0248142 (2021). https://doi.org/10.1371/journal.pone.0248142
  24. V. Watson, Y. Yeboah, M. Weatherspoon, J. Zheng, and E. E. Kalu, Preparation of Encapsulated Sn-Cu@Graphite Composite Anode Materials for Lithium-Ion Batteries, Int. J. Electrochem. Sci., 13, 7968-7988 (2018).
  25. J. Landesfeind, A. Eldiven, and H. A. Gasteiger, Influence of the Binder on Lithium Ion Battery Electrode Tortuosity and Performance, J. Electrochem. Soc., 165, A1122 (2018). https://doi.org/10.1149/2.0971805jes
  26. S. Ni, X. Lv, J. Zhang, J. Ma, X. Yang, and L. Zhang, The Electrochemical Performance of Lithium Vanadate/Natural Graphite Composite Material as Anode for Lithium Ion Batteries, Electrochim. Acta, 145, 327-334 (2014). https://doi.org/10.1016/j.electacta.2014.09.018
  27. Y. Son, T. Lee, B. Wen, J. Ma, C. Jo, Y.-G. Cho, A. Boies, J. Cho, and M. De Volder, High Energy Density Anodes Using Hybrid Li Intercalation and Plating Mechanisms on Natural Graphite, Energy Environ. Sci., 13, 3723-3731 (2020). https://doi.org/10.1039/D0EE02230F