DOI QR코드

DOI QR Code

Enhanced Removal Efficiency of Zinc and Iron Ions Using By-Product of Achyanthes Japonica Stem

우슬 줄기 부산물을 이용한 아연과 철 이온의 제거효율 향상

  • Choi, Suk Soon (Department of Biological and Environmental Engineering, Semyung University) ;
  • Choi, Tay Ryeong (Department of Environmental Safety System Engineering, Semyung niversity) ;
  • Ha, Jeong Hyub (Department of Integrated Environmental Systems, Pyeongtaek University)
  • 최석순 (세명대학교 바이오환경공학과) ;
  • 최태령 (세명대학교 환경안전시스템공학과) ;
  • 하정협 (평택대학교 환경융합시스템학과)
  • Received : 2021.12.30
  • Accepted : 2022.01.17
  • Published : 2022.02.10

Abstract

In the present work, biochar was prepared using Achyanthes japonica stem as a by-product of herbal medicine. In order to apply the prepared biochar to water treatment process, the adsorption characteristics of zinc and iron ions dissolved in water were investigated. When the experiments were performed for 2 h to remove 70 and 100 mg/L of zinc ions, the adsorption amounts of 32.3 and 31.0 mg/g were obtained, respectively. It was also found that the adsorption amount of Achyanthes japonica stem biochar for the removal process of zinc ion was three times higher than that of the activated carbon. In addition, when the experiments were performed for 2 h to treat 70 and 100 mg/L of iron ions, high adsorption amounts of 50.1 and 54.3 mg/g were achieved, respectively. In order to further enhance the removal efficiency of zinc and iron ions, a steam activation process was performed on the biochar of Achyanthes japonica stem. As a result, the removal efficiencies of 70 and 100 mg/L of zinc ions increased to 80 and 60%, respectively. Also, the removal efficiencies of 70 and 100 mg/L of iron ions were improved to 100 and 82%, respectively. In addition, when the biochar of Achyanthes japonica stem with a steam activation was compared with the untreated biochar of Achyanthes japonica stem, the specific surface area increased 37.3 times, and the total and macroporpous pore volumes were improved by 28.4 and 136 times, respectively. Therefore, the results can be used for economically and practically adsorbing zinc and iron ions contained in water.

본 연구에서는 한약재 부산물로서 우슬 줄기를 사용하여 바이오차를 제조하였다. 제조된 바이오차를 수처리 공정에 적용하기 위하여, 수중에 용해된 아연과 철 이온의 흡착 특성을 고찰하였다. 70과 100 mg/L 아연 이온을 제거하고자 2 h 실험이 이루어졌을 때, 각각 32.3과 31.0 mg/g 흡착량을 구할 수 있었다. 위의 실험 결과, 아연 이온의 제거공정에서 우슬 줄기 바이오차는 활성탄소 보다 3배 이상의 흡착량을 나타내었다. 또한, 70과 100 mg/L 철 이온을 처리하고자 2 h 실험이 수행되었을 때, 각각 50.1과 54.3 mg/g의 높은 흡착량을 얻었다. 그리고, 아연과 철 이온의 제거효율을 향상시키고자, 우슬 줄기 바이오차에 수증기 활성화 공정이 이루어졌다. 그 결과, 70과 100 mg/L 아연 이온의 제거효율이 각각 80과 60%로 증가되었다. 또한, 70과 100 mg/L 철 이온의 제거효율은 각각 100과 82%로 향상되었다. 그리고 수증기로 활성화된 우슬 줄기 바이오차는 미처리된 우슬 줄기 바이오차와 비교하였을 때, 비표면적이 37.3배 증가되었으며 총 기공부피와 대세공 기공부피가 각각 28.4, 136배 향상되었다. 따라서 이러한 실험 결과들은 수중에 함유된 아연과 철 이온을 경제적이고 실용적으로 흡착 처리하는 기술에 사용될 수 있을 것이다.

Keywords

Acknowledgement

이 논문은 2020학년도 세명대학교 교내학술연구비 지원에 의해 수행된 연구임.

References

  1. A. Bhatnagar and A. K. Minocha, Biosorption optimization of nickel removal from water using Punica granatum peel waste, Colloids Surf. B Biointerfaces, 76, 544-548 (2010). https://doi.org/10.1016/j.colsurfb.2009.12.016
  2. K.-H. Kim, N.-H. Lee, I.-K. Paik, J.-H. Park, and J.-K. Yang, Characteristics of heavy metal removal from aqueous solution using leather industry by-products, J. Kor. Soi. Environ. Eng., 32(5), 417-426 (2010).
  3. M.-J. Kim, J. H. Choi, T. R. Choi, S. S. Choi, J. H. Ha, and Y.-S. Lee, Enhancement of manganese removal ability from water phase using biochar of Purinus densiflora bark, Appl. Chem. Eng., 31(5). 526-531 (2020). https://doi.org/10.14478/ACE.2020.1063
  4. E. Kstsou, S. Malamis, and K. Haralambous, Examination of zinc uptake in a combined system using sludge, minerals and ultrafiltration membranes, J. Hazard. Mater., 182, 27-38 (2010). https://doi.org/10.1016/j.jhazmat.2010.05.101
  5. A. Dimirkou, Uptake of Zn2+ ions by a fully iron-exchanged clinoptilolite, Case study of heavily contaminated drinking water samples, Water Res., 41, 2763-2773 (2007). https://doi.org/10.1016/j.watres.2007.02.045
  6. F. Fu and Q. Wang, Removal of heavy metal ions from wastewaters: A review, J. Environ. Manage., 92, 407-418 (2011). https://doi.org/10.1016/j.jenvman.2010.11.011
  7. K. Y. Shin, J. Y. Hong, and J. Jang, Heavy metal ion adsorption behavior in nitrogen-doped magnetic carbon nanoparticles: isotherms and kinetic study, J. Hazard. Mater. 190, 36-44 (2011). https://doi.org/10.1016/j.jhazmat.2010.12.102
  8. S. Ali, I. A. Shah, A. Ahmad, J. Nawab, and H. Huang, Ar/O2 plasma treatment of carbon nanotube membranes for enhanced removal of zinc from water and wastewater: A dynamic sorption-filtration process, Sci. Total Environ., 655, 1270-1278 (2019). https://doi.org/10.1016/j.scitotenv.2018.11.335
  9. A. B. Jusoh, W. H. Cheng, W. M. Low, and A. Nora'aini, Study on the removal of iron and manganese in groundwater by granular activated carbon, Desalination, 182, 347-353 (2005). https://doi.org/10.1016/j.desal.2005.03.022
  10. A. G. Tekerlekopoulou, S. Pavlou, and D. V. Vayenas, Removal of ammonium, iron and manganese from potable water in biofiltration units: a review, J. Chem. Technol. Biotechnol. 88, 751-773 (2013). https://doi.org/10.1002/jctb.4031
  11. N. Khatri, S. Tyagi, and D. Rawtani, Recent strategies for the removal of iron from water: A review, J. Water Process Eng., 19, 291-306 (2017). https://doi.org/10.1016/j.jwpe.2017.08.015
  12. Y. Y. Jang and S. J. Sharkis, A low level of reactive oxygen species selects for primitive hematopoietic stem cells that may reside in the low-oxygenic niche, Blood, 110, 3056-3063 (2007).
  13. L. shao, H. Li, S. K. Pazhanisamy, A. Meng, Y. Wang, and D. Zhou, Reactive oxygen species and hematopoietic stem cell senescence, Int. J. Hematol., 94, 24-32 (2011). https://doi.org/10.1007/s12185-011-0872-1
  14. P. Sarin, V. L. Snoeyink, J. Bebee, K. K. Jim, M. A. Beckett, W. M. Kriven, and J. A. Clement, Iron release from corroded iron pipes in drinking water distribution systems, Water Res., 38, 1259-1269 (2004). https://doi.org/10.1016/j.watres.2003.11.022
  15. A. Al-A. Mohammed, Removal of high-level Fe3+ from aqueous solution using natural inorganic materials: bentonite (NB) and quartz (NQ), Desalination, 250, 885-891 (2010). https://doi.org/10.1016/j.desal.2009.06.071
  16. M. Loan, O. M. G. Newman, R. M. G. Cooper, J. B. Farrow, and G. M. Parkinson, Defining the paragoethite process for iron removal in zinc hydrometallurgy, Hydrometallurgy, 81, 104-129 (2006). https://doi.org/10.1016/j.hydromet.2005.11.002
  17. B. Das, P. Hazarika, G. Saikia, H. Kalita, D. C. Goswami, H. B. Das, S. N. Dube, and R. K. Dutta, Removal of iron from groundwater by ash: A systematic study of a traditional method, J. Hazard. Mater., 141, 834-841 (2007). https://doi.org/10.1016/j.jhazmat.2006.07.052
  18. H.-S. Shin, C.-H. Lee, Y.-S. Lee, and K.-H. Kang, Removal of heavy metal from aqueous solution by a column packed with peat-humin, J. Kor. Soi. Environ. Eng., 27(5), 535-541 (2005).
  19. S. E. Bailey, T. J. Olin, R. M. Bricka, and D. D. Adrian, A review of potentially low-cost sorbent for heavy metals, Water Res,. 33(11), 2469-2479 (1999). https://doi.org/10.1016/S0043-1354(98)00475-8
  20. S. S. Choi, Biosorption of copper ions by cycling of Castanea crenata, Appl. Chem. Eng., 25(3), 307-311 (2014). https://doi.org/10.14478/ACE.2014.1035
  21. X. Tan, Y. Liu, G. Zeng, X. Wang, X. Hu, Y. Gu, and Z. Yang, Application of biochar for the removal of pollutants from aqueous solutions, Chemosphere, 125, 70-85 (2015). https://doi.org/10.1016/j.chemosphere.2014.12.058
  22. X. Xu, X. Cao, and L. Zhao, Comparison of rice husk and dairy manure-derived biochars for simultaneously removing heavy metals from aqueous solutions: Role of mineral components in biochars, Chemosphere, 92, 955-961 (2013). https://doi.org/10.1016/j.chemosphere.2013.03.009
  23. H. Lu, W. Zhang, Y. Yang, X. Huang, S. Wang, and R. Qiu, Relative distribution of Pb2+ sorption mechanism by sludge-derived biochar, Water Res., 46, 854-862 (2012). https://doi.org/10.1016/j.watres.2011.11.058
  24. L. Qian and B. Chen, Dual role of biochars as adsorbents for aluminum: The effects of oxygen-containing organic components and the scattering of silicate particles, Environ. Sci. Technol., 47, 8759-8768 (2013). https://doi.org/10.1021/es401756h
  25. D. Mohan, A. Sarswat, Y. S. Ok, and C. U. J. Pittman, Organic and inorganic contaminants from water with biochar, a renewable, low cost and sustainable adsorbent - A critical review, Bioresour. Technol., 160, 191-202 (2014). https://doi.org/10.1016/j.biortech.2014.01.120
  26. X. Chen, G. Chen, L. Chen, Y. Chen, J. Lehmann, M. B. Mcbride, and A. G. Hay, Adsorption of copper and zinc by biochars produced from pyrolysis of hardwood and corn straw in aqueous solution, Bioresour. Technol., 102, 8877-8884 (2011). https://doi.org/10.1016/j.biortech.2011.06.078
  27. Z. Liu and F.-S. Zhang, Removal of lead from water using bichars from hydrothermal liquefaction of biomass, J. Hazard. Mater., 167, 933-939 (2009). https://doi.org/10.1016/j.jhazmat.2009.01.085
  28. H.-S. Cho, S.-W. Kang, J.-H. Kim, M.-J. Choi, H.-W. Yu, E. Park, and H. S. Chun, Antioxidant and antimicrobial activities of combined extracts of Galla rhois, Achyranthes Japonica NaKai, Terminalia Chebula Retz and Glycyrrhiza uralensis, J. Kor. Soi. Biotech. and Bioeng, 29(1), 29-35 (2014).
  29. T.-N. Kwon and C. Jeon, Adsorption characteristics of sericite for nickel ions from industrial waste water, J. Ind. Eng. Chem., 19, 68-72 (2013). https://doi.org/10.1016/j.jiec.2012.07.002
  30. Y. H. Kim, J. Y. Park, Y. J. Yoo, and J. W. Kwak, Removal of lesd using xanthated marine brown alga, Undaria pinnatifida, Process Biochem., 34, 647-652 (1999). https://doi.org/10.1016/S0032-9592(98)00137-X
  31. M. Uchimiya, S. Chang, and K. T. Klasson, Screening biochars for heavy metal retention in soil: Role of oxygen functional group, J. Hazard. Mater., 190, 432-441 (2011). https://doi.org/10.1016/j.jhazmat.2011.03.063
  32. H. Li, X. Dong, E. B. D. Silva, L. M. D. Oliveira, Y. Chen, and L. Q. Ma, Mechanisms of metal sorption by biochars: Biochar characteristics and modifications, Chemosphere, 178, 466-478 (2017). https://doi.org/10.1016/j.chemosphere.2017.03.072