DOI QR코드

DOI QR Code

마이크로진동자 기반 금속유기골격체의 기체 흡탈착 분석

Gas Sorption Analysis of Metal-organic Frameworks using Microresonators

  • 김하민 (경북대학교 나노소재공학부) ;
  • 최현국 (경북대학교 나노소재공학부) ;
  • 김문갑 (경북대학교 나노소재공학부) ;
  • 이영세 (경북대학교 나노소재공학부) ;
  • 임창용 (경북대학교 나노소재공학부)
  • Kim, Hamin (School of Nano & Materials Science and Engineering, Kyungpook National University) ;
  • Choi, Hyun-Kuk (School of Nano & Materials Science and Engineering, Kyungpook National University) ;
  • Kim, Moon-Gab (School of Nano & Materials Science and Engineering, Kyungpook National University) ;
  • Lee, Young-Sei (School of Nano & Materials Science and Engineering, Kyungpook National University) ;
  • Yim, Changyong (School of Nano & Materials Science and Engineering, Kyungpook National University)
  • 투고 : 2021.12.14
  • 심사 : 2021.12.21
  • 발행 : 2022.02.10

초록

금속유기골격체(metal-organic frameworks, MOFs)는 나노사이즈의 기공을 가진 다공성 물질로, 금속이온과 유기리간드의 종류에 따라 기체흡착도 및 기공크기의 조절이 가능하다. 이러한 장점을 이용하여, 기체 포집 및 분리, 그리고 기체센서분야에서 금속유기골격체에 대한 연구가 많이 이루어지고 있다. 신속하고, 정량적인 기체 흡탈착 분석을 위해서는, 센서 표면에 균일한 필름 형태의 다양한 MOF 구조체를 형성해야 한다. 본 총설논문에서는 양극산화알루미늄, 산화아연 나노막대, 구리 박막으로부터 직접합성법을 이용하여 각각 MIL-53 (Al), ZIF-8, Cu-BDC와 같은 MOF를 마이크로진동자 센서 표면에 균일하게 합성하는 방법에 대해 정리하였다. 또한, 대표적인 마이크로진동자인 수정진동자미세저울과 마이크로캔틸레버의 작동원리와 금속유기골격체에 기체흡착 시 변하는 신호해석에 대한 내용을 다룬다. 이를 통해, 마이크로진동자 기반 금속유기골격체의 기체 흡탈착 분석에 대한 이해를 높이고자 한다.

Metal-organic frameworks (MOFs) are porous materials with nano-sized pores. The degree of gas adsorption and pore size can be controlled according to types of metal ions and organic ligands. Many studies have been conducted on MOFs in the fields of gas storage and separation, and gas sensors. For rapid and quantitative gas adsorption/desorption analyses, it is necessary to form various MOF structures in uniform films on a sensor surface. In this review, some of representative direct methods for uniformly synthesizing MOFs such as MIL-53 (Al), ZIF-8, and Cu-BDC from anodized aluminum oxide, zinc oxide nanorods, and copper thin films, respectively on the surface of a microresonator are highlighted. In addition, the operation principle of quartz crystal microbalance and microcantilever, which are representative microresonators, and the interpretation of signals that change when gas is adsorbed to MOFs are covered. This is intended to enhance the understanding of gas adsorption/desorption analysis of MOFs using microresonators.

키워드

과제정보

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (No. NRF-2021R1A5A8033165, NRF-2020R1G1A1099886).

참고문헌

  1. S. L. James, Metal-organic frameworks, Chem. Soc. Rev., 32, 276- 288 (2003). https://doi.org/10.1039/b200393g
  2. J. Liu, L. Chen, H. Cui, J. Zhang, L. Zhang, and C. Y. Su, Applications of metal-organic frameworks in heterogeneous supramolecular catalysis, Chem. Soc. Rev., 43, 6011-6061 (2014). https://doi.org/10.1039/C4CS00094C
  3. Y. He, W. Zhou, G. Qian, and B. Chen, Methane storage in metalorganic frameworks, Chem. Soc. Rev., 43, 5657-5678 (2014). https://doi.org/10.1039/c4cs00032c
  4. J. R. Li, J. Sculley, and H.-C. Zhou, Metal-organic frameworks for separations, Chem. Rev., 112, 869-932 (2012). https://doi.org/10.1021/cr200190s
  5. Y. Li and R. T. Yang, Gas adsorption and storage in metal-organic framework MOF-177, Langmuir, 23, 12937-12944 (2007). https://doi.org/10.1021/la702466d
  6. T. G. Glover, G. W. Peterson, B. J. Schindler, D. Britt, and O. Yaghi, MOF-74 building unit has a direct impact on toxic gas adsorption, Chem. Eng. Sci., 66, 163-170 (2011). https://doi.org/10.1016/j.ces.2010.10.002
  7. S. Kitagawa and R. Matsuda, Chemistry of coordination space of porous coordination polymers, Coord. Chem. Rev., 251, 2490-2509 (2007). https://doi.org/10.1016/j.ccr.2007.07.009
  8. F. Chen, D. Lai, L. Guo, J. Wang, P. Zhang, K. Wu, Z. Zhang, Q. Yang, Y. Yang, B. Chen, Q. Ren, and Z. Bao, Deep desulfurization with record SO2 adsorption on the metal-organic frameworks, J. Am. Chem. Soc., 143, 9040-9047 (2021). https://doi.org/10.1021/jacs.1c02176
  9. X.-D. Song, S. Wang, C. Hao, and J.-S. Qiu, Investigation of SO2 gas adsorption in metal-organic frameworks by molecular simulation, Inorg. Chem. Commun., 46, 277-281 (2014). https://doi.org/10.1016/j.inoche.2014.06.003
  10. E. Martinez-Ahumada, A. Lopez-Olvera, V. Jancik, J. E. Sanchez-Bautista, E. Gonzalez-Zamora, V. Martis, D. R. Williams, and I. A. Ibarra, MOF materials for the capture of highly toxic H2S and SO2, Organometallics, 39, 883-915 (2020). https://doi.org/10.1021/acs.organomet.9b00735
  11. W. Sun, L. Lin, X. Peng, and B. Smit, Computational screening of porous metal-organic frameworks and zeolites for the removal of SO2 and NOX from flue gases, AIChE. J., 60, 2314-2323 (2014). https://doi.org/10.1002/aic.14467
  12. A. Claudino, J. L. Soares, R. F. P. M. Moreira, and H. J. Jose, Adsorption equilibrium and breakthrough analysis for NO adsorption on activated carbons at low temperatures, Carbon, 42, 1483-1490 (2004). https://doi.org/10.1016/j.carbon.2004.01.048
  13. S. Cavenati, C. A. Grande, and A. E. Rodrigues, Adsorption equilibrium of methane, carbon dioxide, and nitrogen on zeolite 13X at high pressures, J. Chem. Eng. Data, 49, 1095-1101 (2004). https://doi.org/10.1021/je0498917
  14. M. K. A. Mesfer, and M. Danish, Breakthrough adsorption study of activated carbons for CO2 separation from flue gas, J. Environ. Chem. Eng., 6, 4514-4524 (2018). https://doi.org/10.1016/j.jece.2018.06.042
  15. R. Datar, S. Kim, S. Jeon, P. Hesketh, S. Manalis, A. Boisen, and T. Thundat, Cantilever sensors: nanomechanical tools for diagnostics, MRS. Bull., 34, 449-454 (2009). https://doi.org/10.1557/mrs2009.121
  16. D. Lee, N. Shin, K.-H. Lee, and S. Jeon, Microcantilevers with nanowells as moisture sensors, Sens. Actuators B Chem., 137, 561-565 (2009). https://doi.org/10.1016/j.snb.2009.01.031
  17. C. Yim, M. Lee, M. Yun, G.-H. Kim, K. T. Kim, and S. Jeon, CO2-selective nanoporous metal-organic framework microcantilevers, Sci. Rep., 5, 10674 (2015). https://doi.org/10.1038/srep10674
  18. C. Yim and S. Jeon, Direct synthesis of Cu-BDC frameworks on a quartz crystal microresonator and their application to studies of n-hexane adsorption, RSC. Adv., 5, 67454-67458 (2015). https://doi.org/10.1039/C5RA11686D
  19. K. Okada, R. Ricco, Y. Tokudome, M. J. Styles, A. J. Hill, M. Takahashi, and P. Falcaro, Copper conversion into Cu(OH)2 nanotubes for positioning Cu3(BTC)2 MOF crystals: controlling the growth on flat plates, 3D architectures, and as patterns, Adv. Funct. Mater., 24, 1969-1977 (2013). https://doi.org/10.1002/adfm.201303303
  20. I. Stassen, N. Campagnol, J. Fransaer, P. Vereecken, D. D. Vos, and R. Ameloot, Solvent -free synthesis of supported ZIF-8 films and patterns through transformation of deposited zinc oxide precursors, CrystEngComm, 15, 9308-9311 (2013). https://doi.org/10.1039/c3ce41025k
  21. Y. Hwang, H. Sohn, A. Phan, O. M. Yaghi, and R. N. Candler, Dielectrophoresis-assembled zeolitic imidazolate framework nanoparticle-coupled resonators for highly sensitive and selective gas detection, Nano Lett., 13, 5271-5276 (2013). https://doi.org/10.1021/nl4027692
  22. C. Yim, M. Lee, W. Kim, S. Lee, G.-H. Kim, K. T. Kim, and S. Jeon, Adsorption and desorption characteristics of alcohol vapors on a nanoporous ZIF-8 film investigated using silicon microcantilevers, Chem. Commun., 51, 6168-6171 (2015). https://doi.org/10.1039/c5cc01315a
  23. F. J. Giessibl, Advances in atomic force microscopy, Rev. Mod. Phys., 75, 949-983 (2003). https://doi.org/10.1103/RevModPhys.75.949
  24. T. Thundat, R. J. Warmack, G. Y. Chen, and D. P. Allison, Thermal and ambient-induced deflections of scanning force microscope cantilevers, Appl. Phys. Lett., 64, 2894-2896 (1994). https://doi.org/10.1063/1.111407
  25. C. Yim, M. Yun, S. Kim, N. Jung, S.-H. Lim, M. Lee, S.-W. Rhee, T. Thundat, and S. Jeon, Nanomechanical Thermal Analysis of Indium Films Using Silicon Microcantilevers, Jpn. J. Appl. Phys., 51, 08KB07 (2012). https://doi.org/10.7567/JJAP.51.08KB07
  26. T. T. P. I. O. and R. J. Warmack, Microcantilever sensors, Nanoscale Microscale Thermophys. Eng., 1, 185-199 (1997). https://doi.org/10.1080/108939597200214
  27. C. Yim, M. Yun, N. Jung, and S. Jeon, Quartz resonator for simultaneously measuring changes in the mass and electrical resistance of a polyaniline film, Anal. Chem., 84, 8179-8183 (2012). https://doi.org/10.1021/ac3013785
  28. T. Abe and M. Esashi, One-chip multichannel quartz crystal microbalance (QCM) fabricated by Deep RIE, Sens. Actuators Phys., 82, 139-143 (2000). https://doi.org/10.1016/S0924-4247(99)00330-1
  29. G. Sauerbrey, The Use of Quartz Crystal Oscillators for Weighing Thin Layers and for Microweighing Applications, 1st ed., 1-17 (1991).