DOI QR코드

DOI QR Code

Cesium Ions Adsorption of Activated Carbon Treated by Oxygen Plasma

산소 플라즈마 처리된 활성탄소의 세슘 이온 흡착

  • Ha, Seongmin (Department of Applied Chemistry and Chemical Engineering, Chungnam National University) ;
  • Kwak, Cheol Hwan (Institute of Carbon Fusion Technology (InCFT), Chungnam National University) ;
  • Lim, Chaehun (Department of Applied Chemistry and Chemical Engineering, Chungnam National University) ;
  • Kim, Seokjin (Department of Applied Chemistry and Chemical Engineering, Chungnam National University) ;
  • Lee, Young-Seak (Department of Applied Chemistry and Chemical Engineering, Chungnam National University)
  • 하성민 (충남대학교 응용화학공학과) ;
  • 곽철환 (충남대학교 탄소융복합기술연구소) ;
  • 임채훈 (충남대학교 응용화학공학과) ;
  • 김석진 (충남대학교 응용화학공학과) ;
  • 이영석 (충남대학교 응용화학공학과)
  • Received : 2021.11.05
  • Accepted : 2021.12.24
  • Published : 2022.02.10

Abstract

The effect of introducing oxygen functional groups by oxygen plasma treatment of activated carbon on adsorption properties of cesium ions was investigated. During the oxygen plasma treatment, the frequency, power, and oxygen gas flow rates were fixed at 100 kHz, 80 W, and 60 sccm, respectively, while the reaction time was varied. Under the experimental conditions, the amount of cesium ion adsorption increased as the content of oxygen groups on C-O-C and O=C-O bonds increased when the reaction time with oxygen gas was 10 minutes. However, when the reaction time increased to 15 minutes, the oxygen functional group content decreased resulting in the decrease of the adsorbed cesium ion amount. On the other hand, unlike the oxygen content of the surface-treated activated carbon, the specific surface area and pore properties were hardly affected by the oxygen plasma reaction time. As a result, the oxygen plasma-treated activated carbon improved the cesium ion removal rate by up to 97.3% compared to that of the untreated activated carbon. This is considered to be due to the content of oxygen groups on C-O-C and O=C-O bonds introduced on the surface of the activated carbon through oxygen plasma treatment.

산소 플라즈마 처리에 따른 활성탄소의 산소 관능기 도입이 세슘 이온 흡착 특성에 미치는 영향에 대하여 고찰하였다. 산소 플라즈마 처리 시 주파수, 전력 및 산소 가스 유량은 각각 100 kHz, 80 W 및 60 sccm으로 고정하였으며, 반응시간을 변수로 수행하였다. 본 실험조건에서는 산소 가스와의 반응시간이 10분일 때 C-O-C 및 O=C-O 결합 내 산소 기능기 함량이 증가함에 따라 세슘 이온 흡착량이 증가하였다. 그러나 반응 시간이 15분일 때 산소 관능기 함량이 감소하게 되어 세슘 이온 흡착량이 오히려 감소되었다. 한편, 표면 처리된 활성탄소의 산소 함량과는 달리 그 비표면적 및 기공 특성은 산소 플라즈마 반응 시간에 따라 거의 영향을 받지 않았다. 결과적으로 산소 플라즈마 처리된 활성탄소는 미처리 활성탄소에 비하여 세슘 이온 제거율이 최대 97.3%까지 향상되었다. 이는 산소 플라즈마 처리로 활성탄소 표면에 도입된 C-O-C 및 O=C-O 결합 내 산소 기능기의 함량에 기인한 것으로 판단된다.

Keywords

Acknowledgement

이 연구는 2021년도 산업통상자원부 및 산업기술평가관리원(KEIT) 연구비 지원에 의한 연구임('20012763').

References

  1. J. G. Kim, M. N. Kim, R. Malsawmdawngzela, C. S. An, and S. M. Lee, Adsorption Removal of Cesium from Aqueous Solution using Activated Bentonite, KSWST J. Water Treat., 27, 77-87 (2019). https://doi.org/10.17640/KSWST.2019.27.2.77
  2. G. Y. Kim, S.-C. Jang, Y. H. Song, C.-S. Lee, Y. S. Huh, and C. Roh, Screening and Identification of a Cesium-tolerant Strain of Bacteria for Cesium Biosorption, Korean J. Environ. Biol., 31, 304-313 (2016).
  3. J. P. Ahn and M. H. Lee, Sorption Efficiency of the Bamboo Charcoal to Remove the Cesium in the Contaminated Water System, Econ. Environ. Geol., 51, 87-97 (2018). https://doi.org/10.9719/EEG.2018.51.2.87
  4. S. R. H. Vanderheyden, R. Van Ammel, K. Sobiech-Matura, K. Vanreppelen, S. Schreurs, W. Schroeyers, J. Yperman, and R. Carleer, Adsorption of cesium on different types of activated carbon, J. Radioanal. Nucl. Chem., 310, 301-310 (2016). https://doi.org/10.1007/s10967-016-4807-4
  5. E. Dialynas and E. Diamadopoulos, Integration of a membrane bioreactor coupled with reverse osmosis for advanced treatment of municipal wastewater, Desalination, 238, 302-311 (2009) https://doi.org/10.1016/j.desal.2008.01.046
  6. H. Bessbousse, T. Rhlalou, JF. Verchere, and L. Lebrun, Removal of heavy metal ions from aqueous solutions by filtration with a novel complexing membrane containing poly (ethyleneimine) in a poly (vinyl alcohol) matrix, J. Membr. Sci., 307, 249-259 (2008). https://doi.org/10.1016/j.memsci.2007.09.027
  7. B. Pakzadeh and J. R. Batista, Chromium removal from ion-exchange waste brines with calcium polysulfide, Water Res., 45, 3055-3064 (2011). https://doi.org/10.1016/j.watres.2011.03.006
  8. M. Kobya, Removal of Cr (VI) from aqueous solutions by adsorption onto hazelnut shell activated carbon: kinetic and equilibrium studies, Bioresour. Technol., 91, 317-321 (2004). https://doi.org/10.1016/j.biortech.2003.07.001
  9. Lalhmunsiama, J. G. Kim, S. S. Choi, and S. M. Lee, Recent Advances in Adsorption Removal of Cesium from Aquatic Environment, Appl. Chem. Eng., 29, 127-137 (2018). https://doi.org/10.14478/ACE.2018.1019
  10. H. Nishita, D. Dixon, and K. H. Larson, Accumulation of Cs and K and growth of bean plants in nutrient solution and soil., Plant Soil., 17, 221-242 (1962). https://doi.org/10.1007/BF01376226
  11. A. Iwanade, N. Kasai, H. Hoshina, Y. Ueki, S. Saiki, and N. Seko, Hybrid grafted ion exchanger for decontamination of radioactive cesium in Fukushima Prefecture and other contaminated areas, J. Radioanal. Nucl. Chem, 293, 703-709 (2012). https://doi.org/10.1007/s10967-012-1721-2
  12. H. Deng, Y. Li, Y. Huang, X. Ma, L. Wu, and T. Cheng, An efficient composite ion exchanger of silica matrix impregnated with ammonium molybdophosphate for cesium uptake from aqueous solution, Chem. Eng. J., 286, 25-35 (2016). https://doi.org/10.1016/j.cej.2015.10.040
  13. H. A. Alamudy and K. Cho, Selective adsorption of cesium from an aqueous solution by a montmorillonit eprussian blue hybrid, Chem. Eng. J., 349, 595-602 (2018). https://doi.org/10.1016/j.cej.2018.05.137
  14. S. Ding, L. Zhang, Y. Li, and L. Hou, Fabrication of a novel polyvinylidene fluoride membrane via binding SiO2 nanoparticles and a copper ferrocyanide layer onto a membrane surface fors elective removal of cesium, J. Hazard. Mater., 368, 292-299 (2019). https://doi.org/10.1016/j.jhazmat.2019.01.065
  15. Q. Tao, X. Zhang, K. Prabaharan, and Y. Dai, Separation of cesium from wastewater with copper hexacyanoferrate film in an electrochemical system driven by microbial fuel cells, Bioresour. Technol., 278, 456-459 (2019). https://doi.org/10.1016/j.biortech.2019.01.093
  16. J. Wang and S. Zhuang, Cesium separation from radioactive waste by extraction and adsorption based on crown ethers and calixarenes, Nucl. Eng. Technol., 52, 328-336 (2020). https://doi.org/10.1016/j.net.2019.08.001
  17. N. Talreja, D. Kumar, and N. Verma, Removal of hexavalent chromium from water using Fe-grown carbon nanofibers containing porous carbon microbeads, J. Water Process Eng., 3, 34-45 (2014). https://doi.org/10.1016/j.jwpe.2014.08.001
  18. H. Yang, H. Li, J. Zhai, L. Sun, Y. Zhao, and H. Yu, Magnetic prussian blue/graphene oxide nanocomposites caged in calcium alginate microbeads for elimination of cesium ions from water and soil, Chem. Eng. J., 246, 10-19 (2014). https://doi.org/10.1016/j.cej.2014.02.060
  19. A. Nilchi, H. Atashi, A. H. Javid, and R.Saberi, Preparations of PAN-based adsorbers for separation of cesium and cobalt from radioactive wastes, Appl. Radiat. Isot., 65, 482-487 (2007). https://doi.org/10.1016/j.apradiso.2006.12.003
  20. D. Mohan and C. U. Pittman Jr, Activated carbons and low cost adsorbents for remediation of tri-and hexavalent chromium from water, J. Hazard. Mater., 137, 762-811 (2006). https://doi.org/10.1016/j.jhazmat.2006.06.060
  21. M. Montana, A. Camacho, I. Serrano, R. Devesa, L. Matia and I. Valles, Removal of radionuclides in drinking water by membrane treatment using ultrafiltration, reverse osmosis and electrodialysis reversal, J. Environ. Radioact., 125, 86-92 (2013). https://doi.org/10.1016/j.jenvrad.2013.01.010
  22. H. Marsh and F. Rodriguez-Reinonso, Activated carbon, 89-100, Elsevier Science & Technology Books, Amsterdam, NL (2006).
  23. S. X. Liu, X. Chen, X. Y. Chen, Z. F. Liu, and H. L. Wan, Activated carbon with excellent chromium (VI) adsorption performance prepared by acid-base surface modification, J. Hazard. Mater., 141, 315-319 (2007). https://doi.org/10.1016/j.jhazmat.2006.07.006
  24. E. J. Song, M. J. Kim, J. I. Han, Y. J. Choi, and Y.-S. Lee, Gas Adsorption Characteristics of by Interaction between oxygen functional groups introduced on activated carbon fibers and acetic acid molecules, Appl. Chem. Eng., 30, 160-166 (2019). https://doi.org/10.14478/ACE.2018.1122
  25. B. H. Yang, C. G. Kim, J. D. Kim, and S. K. Ryu, The Study of Surface-Chemical Characteristics of Ozone treated Activated Carbon fibers, Theories and Application of Chem. Eng., 4, 2677-2680 (1998).
  26. J. H. Kim, S. H. Kim, G. B. Lee, H. Kim, and B. U. Hong, Characterization of Gas Production and Development of specific surface areas during the Chemical Activation on Activated Carbons Treated with Ozone, Energy Environ., 14, 113-124 (2019).
  27. S. J. Park, J. S. Shin, and J. Kawasaki, Ammonia Removal of Activated Carbons Treated by Anodic Oxidation, Appl. Chem. Eng., 14, 418-422 (2003).
  28. S. J. Park and K. D. Kim, Influence of anodic surface treatment of activated carbon on adsorption and ion exchange properties, J. Colloid Interface Sci., 218, 331-334 (1999). https://doi.org/10.1006/jcis.1999.6387
  29. S. J. Park and J. S. Shin, Influence of copper content on NO removal of the activated carbon fibers produced by electroplating, J. Colloid Interface Sci., 264, 39-42 (2003). https://doi.org/10.1016/S0021-9797(03)00333-3
  30. C. L. Mangun, J. A. De Barr, and J. Economy, Adsorption of sulfur dioxide on ammonia-treated activated carbon fibers, Carbon, 39, 1689-1696 (2001). https://doi.org/10.1016/S0008-6223(00)00300-6
  31. R. E. Lee, C. H. Lim, M. J. Kim, and Y.-S. Lee, Acetic Acid Gas Adsorption Characteristics of Activated Carbon Fiber by Plasma and Direct Gas Fluorination., Appl. Chem. Eng., 32, 55-60 (2021). https://doi.org/10.14478/ACE.2020.1098
  32. J. W. Lim, E. G. Jeong, M. J. Jung, S. L. Lee, and Y.-S. Lee, Preparation and Electrochemical Characterization of Activated Carbon Electrode by Amino-fluorination, Appl. Chem. Eng., 22, 405-410 (2011).
  33. K. Okajima, K. Ohta, and M. Sudoh, Capacitance behavior of activated carbon fibers with oxygen-plasma treatment, Electrochim. Acta, 50, 2227-2231 (2005). https://doi.org/10.1016/j.electacta.2004.10.005
  34. B. C. Bai, H. U. Lee, C. W. Lee, Y.-S. Lee, and J. S. Im, N2 plasma treatment on activated carbon fibers for toxic gas removal: Mechanism study by electrochemical investigation, Chem. Eng. J., 306, 260-268 (2016)., https://doi.org/10.1016/j.cej.2016.07.046
  35. M. J. Jung, Y. Ko, K. H. Kim, and Y.-S. Lee, Oxyfluorination of pitch-based activated carbon fibers for high power electric double layer capacitor, Appl. Chem. Eng., 28, 638-644 (2017). https://doi.org/10.14478/ACE.2017.1079
  36. M. J. Jung, M. S. Park, S. Lee, and Y.-S. Lee, Effect of E-beam radiation with acid drenching on surface properties of pitch-based carbon fibers, Appl. Chem. Eng., 27, 319-324 (2016). https://doi.org/10.14478/ACE.2016.1042
  37. S. H. Park and S. D. Kim, Oxygen plasma surface modification of polymer powder in a fluidized bed reactor-functionalization of HDPE powder surface, Korean J. Chem. Eng., 35, 243-248 (1997).
  38. A. Morais, J. P. C. Alves, F. A. S. Lima, M. Lira-Cantu, and A. F. Nogueira., Enhanced photovoltaic performance of inverted hybrid bulk heterojunction solar cells using TiO2/ reduced graphene oxide films as electron transport layers, J. Photonics Energy, 5, 057408 (2015). https://doi.org/10.1117/1.JPE.5.057408
  39. M. Uchimiya, S. Chang, and T. Klasson, Screening biochars for heavy metal retention in soil: Role of oxygen functional groups, J. Hazard. Mater., 190, 432-441 (2011). https://doi.org/10.1016/j.jhazmat.2011.03.063
  40. J. Kiener, L. Limousy, M. Jeguirim, J. M. Le Meins, S. HajjarGarreau, G. Bigoin, and C. M. Ghimbeu, Activated Carbon/Transition Metal (Ni, In, Cu) Hexacyanoferrate Nanocomposites for Cesium Adsorption, Materials, 12, 1253 (2019). https://doi.org/10.3390/ma12081253