DOI QR코드

DOI QR Code

다짐품질관리를 위한 IoT 기반 DCPT 적용 평가

Evaluation of Compaction Quality Control applied the Dynamic Cone Penetrometer Test based on IoT

  • Jisun, Kim (Department of Geotechnical Engineering Research, Korea Institute of Civil Engineering and Building Technology) ;
  • Jinyoung, Kim (Department of Geotechnical Engineering Research, Korea Institute of Civil Engineering and Building Technology) ;
  • Namgyu, Kim (Research Strategic Planning Department, Strategic Tasks Division, Korea Institute of Civil Engineering and Building Technology) ;
  • Sungha, Baek (School of Civil and Environmental Engineering & Construction Engineering Research Institute, HanKyong National University) ;
  • Jinwoo, Cho (Department of Geotechnical Engineering Research, Korea Institute of Civil Engineering and Building Technology)
  • 투고 : 2022.10.13
  • 심사 : 2022.11.28
  • 발행 : 2022.12.30

초록

토공사에서 다짐품질관리를 위해 일반적으로 평판재하시험 및 현장밀도시험 등이 실시되며, 다짐확인을 위한 추가 분석이 동반된다. 최근 IoT(Internet of Things) 기반의 디지털 환경이 조성되면서 스마트 다짐품질관리가 가능한 DCPT(Dynamic Cone Penetration Test) 장비가 개발되었고, 이러한 디지털 DCPT 시스템은 실시간 다짐에 대한 위치·시간정보와 작업자의 이력관리가 가능하게 되었다. IoT 기반의 DCPT 시스템은 기존의 다짐품질시험의 시간적·비용적 단점을 개선하고 현장에서 유연하게 적용가능하게 되었으며, 현장다짐 지표인 DPI(Dynamic Cone Penetration Index)의 기록과 저장이 자동화 되었다. 본 연구에서는 이러한 DCPT 장비를 현장 적용하여, 현장 적용 데이터인 DPI를 통해 다짐강도의 경향을 확인하였다. 그 결과 최종다짐에서 초기다짐의 DPI보다 1.4배 감소하여 지표에서 10~14cm 깊이인 노상 다짐층의 다짐강도 증가를 확인할 수 있었으며, 다짐결과비교를 위한 평판재하시험의 지지력 계수의 경향과 동일하게 최종 다짐시 다짐강도 증가경향을 확인할 수 있었다. 또한 기존 아날로그 DCPT의 경우가 아닌 IoT DCPT장비를 사용하므로 인원 및 시간을 저감한 시험수행이 가능하였으며 측정데이터의 스마트기기 전송을 통해 다짐정보의 실시간 확인이 가능하게 되었다. 이러한 스마트 기능이 추가된 IoT 기반 DCPT장비를 통해 DPI로 실시간 다짐관리 가능성을 확인할 수 있었으며, DPI에 대한 국내 다짐 재료 및 실내시험조건에 대한 추가연구와 평판재하시험과의 상관성에 대한 연구가 지속적으로 이루어진다면 다짐관리 및 확인 용도로 IoT 기반 DCPT장비가 폭넓게 활용될 수 있을 것이라 판단된다.

Generally, the plate load test and the field density test are conducted for compaction quality control in earthwork, and then additional analysis. Recently developed that the DCPT (Dynamic Cone Penetration Test) equipment for smart compaction quality control its the system are able to get location and real-time information about worker history management. The IoT-based the DCPT system improved the time-cost in the field compared traditional test, and the functions recording and storage of the DPI (Dynamic Cone Penetration Index) were automated. This paper describes using these DCPT equipment on in-situ and compared to the standards of the DCPT, and the compaction trend had be confirmed with DPI as the field test data. As a result, the DPI of the final compaction decreased by 1.4 times compared to the initial compaction, confirming the increase in the compaction strength of the subgrade compaction layer 10 to 14 cm deep from the surface. A trend of increasing compaction strength was observed. This showed a tendency to increase the compaction strength of the target DPI proposed by MnDOT and the results of the existing plate load test, but there was a difference in the increase rate. Therefore, additional studies are needed on domestic compaction materials and laboratory conditions for target DPI and correlation studies with the plate load tests. If this is reflected, it is suggested that DCPT will be widely used as smart construction equipment in earthworks.

키워드

과제정보

This research was supported by the Ministry of Land, Infrastructure and Transport of the Korean government (Project Number: 21SMIP-A157130-02).

참고문헌

  1. ASTM D6951-03 (2003), "Standard Test Method for Use of the Dynamic Cone Penetrometer in Shallow Pavement".
  2. Burnham, T. R. (1997), "Application of the dynamic cone penetrometer to Minnesota department of transportation pavement assessment procedures (No. MN/RC-97/19)", Minnesota. Department of Transportation.
  3. Davich, P., Camargo, F., Larsen, B., Roberson, R. and Siekmeier, J. (2006), "Validation of DCP and LWD moisture specifications for granular materials (No. MN/RC-2006-20)", Minnesota. Department of Transportation.
  4. Edill, T. B. and Benson, C. H. (2005), "Investigation of the DCP and SSG as Alternative Methods to Determine Subgrade Stability", Department of Civil and Environmental Engineering, University of Wisconsin-Madison.
  5. Harison, J. R. (1987), "Correlation Between California Bearing Ratio and Dynamic Cone Penetrometer Strength Measurement of Soils", Proc. Instn. of Civ. Engrs., London, Part2, pp.83-87.
  6. Kim, D. H. and Bae, K. H. (2021), "Developing DCPT System based on IoT and Field Demonstration for Smart Construction of Earthwork". Journal of the Korea AcademiaIndustrial cooperation Society, Vol.22, No.11 pp.488-498.
  7. Kim, K. S. (2015), "Comparison of Elastic Moduli of Subgrade Soils Using Plate Loading Test", Soil Stiffness Gauge and Dynamic Cone Penetrometer. Journal Of Korean Geotechnical Society, Vol.31, No.3, pp.63-72. https://doi.org/10.7843/KGS.2015.31.3.63
  8. Kleyn, E. G. (1975), "The Use of The Dynamic Cone Penetrometer(DCP)", Transvaal Road Department. Report 2/74.
  9. Ministry of Land, Transport and Maritime Affairs (2011), "Temporary Guidelines for Pavement Lower Structural", Resolutions Management, p.56. (in Korean)
  10. National Cooperative Highway Research Program (2004), "Guide for mechanistic-empirical design of new and rehabilitated pavement structures. Part 2, Design inputs", Final Rep., No. NCHRP 1-37A, Washington, D.C.
  11. Oh, B. T., Choi, J. S. and You, K. H. (2019), "Evaluation of Subgrade Compaction Degree Using Dynamic CPT", Korean Society of Road Engineering, Vol.21, No.6, pp.85-95.
  12. Park, H. G. and Bae, K .H (2020), "Development of DCPT Equipment based on IoT for Rod Tamping in Smart Construction", Journal of the Korea Academia-Industrial cooperation Society, Vol.21, No.11 pp.501-509. https://doi.org/10.5762/KAIS.2020.21.11.501
  13. Park, J. W. and Yoon, W. G. (2019), "3D Geospatial Information Model based Smart Construction System in Earthwork", Journal of the Korean Society of Civil Engineers, Vol.67, No.11, pp.20-27.
  14. Seo, J. W., Gang, T. G. and Choe, C. H. (2020), "Automation Technology and Control Technology of Construction Equipment", Construction Engineering and Management, Vol.21, No.4, pp.4-10.
  15. Siekmeier, J., Pinta, C., Merth, S., Jensen, J., Davich, P., Camargo, F. F., and Beyer, M. (2009), "Using the dynamic cone penetrometer and light weight deflectometer for construction quality assurance (No. MN/RC 2009-12)", Minnesota. Dept. of Transportation. Office of Materials and Road Research.
  16. Smith, R. B. and Pratt, D. N. (1983), "A field study of in situ California bearing ratio and dynamic cone penetrometer testing for road subgrade investigations", Australian Road Research, 13(4).
  17. Webster, S. L., Grau, R. H. and Williams, T. P. (1992), "Description and application of dual mass dynamic cone penetrometer", Geotechnical Laboratory (US).
  18. Wu, S. and Sargand, S. (2007), "Use of dynamic cone penetrometer in subgrade and base acceptance (No.FHWA/ODOT-2007/01)", Ohio Research Institute for Transportation and the Environment.
  19. Youn, I. R. and Oh. S.W. (2013), "Estimate of the Bearing Capacity on Subbase and Subgrade with Dynamic Plate Bearing Test", Journal of the Korean Geo-Environmental Society, Vol.14, No.8, pp.53-60. https://doi.org/10.14481/jkges.2013.14.12.053