DOI QR코드

DOI QR Code

Recent Developments in Correlative Super-Resolution Fluorescence Microscopy and Electron Microscopy

  • Received : 2021.10.28
  • Accepted : 2021.12.31
  • Published : 2022.01.31

Abstract

The recently developed correlative super-resolution fluorescence microscopy (SRM) and electron microscopy (EM) is a hybrid technique that simultaneously obtains the spatial locations of specific molecules with SRM and the context of the cellular ultrastructure by EM. Although the combination of SRM and EM remains challenging owing to the incompatibility of samples prepared for these techniques, the increasing research attention on these methods has led to drastic improvements in their performances and resulted in wide applications. Here, we review the development of correlative SRM and EM (sCLEM) with a focus on the correlation of EM with different SRM techniques. We discuss the limitations of the integration of these two microscopy techniques and how these challenges can be addressed to improve the quality of correlative images. Finally, we address possible future improvements and advances in the continued development and wide application of sCLEM approaches.

Keywords

Acknowledgement

This work was supported by the National Research Foundation of Korea (NRF) Grant funded by the Korea government (MSIT) (No. 2021R1C1C1006700) and the POSCO Cheongam Foundation (fellowship to D.K.).

References

  1. Ahn, J., Lee, D., Jo, I., Jeong, H., Hyun, J.K., Woo, J.S., Choi, S.H., and Ha, N.C. (2020). Real-time measurement of the liquid amount in cryo-electron microscopy grids using laser diffraction of regular 2-D holes of the grids. Mol. Cells 43, 298-303. https://doi.org/10.14348/molcells.2020.2238
  2. Al Jord, A., Lemaitre, A.I., Delgehyr, N., Faucourt, M., Spassky, N., and Meunier, A. (2014). Centriole amplification by mother and daughter centrioles differs in multiciliated cells. Nature 516, 104-107. https://doi.org/10.1038/nature13770
  3. Andrian, T., Delcanale, P., Pujals, S., and Albertazzi, L. (2021). Correlating super-resolution microscopy and transmission electron microscopy reveals multiparametric heterogeneity in nanoparticles. Nano Lett. 21, 5360-5368. https://doi.org/10.1021/acs.nanolett.1c01666
  4. Betzig, E., Patterson, G.H., Sougrat, R., Lindwasser, O.W., Olenych, S., Bonifacino, J.S., Davidson, M.W., Lippincott-Schwartz, J., and Hess, H.F. (2006). Imaging intracellular fluorescent proteins at nanometer resolution. Science 313, 1642-1645. https://doi.org/10.1126/science.1127344
  5. Bykov, Y.S., Cortese, M., Briggs, J.A., and Bartenschlager, R. (2016). Correlative light and electron microscopy methods for the study of virus-cell interactions. FEBS Lett. 590, 1877-1895. https://doi.org/10.1002/1873-3468.12153
  6. Chang, Y.W., Chen, S., Tocheva, E.I., Treuner-Lange, A., Lobach, S., Sogaard-Andersen, L., and Jensen, G.J. (2014). Correlated cryogenic photoactivated localization microscopy and cryo-electron tomography. Nat. Methods 11, 737-739. https://doi.org/10.1038/nmeth.2961
  7. Chung, J., Jeong, D., Kim, G.H., Go, S., Song, J., Moon, E., Huh, Y.H., and Kim, D. (2021). Super-resolution imaging of platelet-activation process and its quantitative analysis. Sci. Rep. 11, 10511. https://doi.org/10.1038/s41598-021-89799-9
  8. de Waal, G.M., Engelbrecht, L., Davis, T., De Villiers, W.J., Kell, D.B., and Pretorius, E. (2018). Correlative Light-Electron Microscopy detects lipopolysaccharide and its association with fibrin fibres in Parkinson's Disease, Alzheimer's Disease and Type 2 Diabetes Mellitus. Sci. Rep. 8, 16798. https://doi.org/10.1038/s41598-018-35009-y
  9. Fathima, A., Quintana-Catano, C.A., Heintze, C., and Schlierf, M. (2021). Precision of fiducial marker alignment for correlative super-resolution fluorescence and transmission electron microscopy. Discov. Mater. 1, 11. https://doi.org/10.1007/s43939-021-00011-1
  10. Fokkema, J., Fermie, J., Liv, N., van den Heuvel, D.J., Konings, T.O., Blab, G.A., Meijerink, A., Klumperman, J., and Gerritsen, H.C. (2018). Fluorescently labelled silica coated gold nanoparticles as fiducial markers for correlative light and electron microscopy. Sci. Rep. 8, 13625. https://doi.org/10.1038/s41598-018-31836-1
  11. Fu, Z., Peng, D., Zhang, M., Xue, F., Zhang, R., He, W., Xu, T., and Xu, P. (2020). mEosEM withstands osmium staining and Epon embedding for super-resolution CLEM. Nat. Methods 17, 55-58. https://doi.org/10.1038/s41592-019-0613-6
  12. Go, S., Jeong, D., Chung, J., Kim, G.H., Song, J., Moon, E., Huh, Y.H., and Kim, D. (2021). Super-resolution imaging reveals cytoskeleton-dependent organelle rearrangement within platelets at intermediate stages of maturation. Structure 29, 810-822.e3. https://doi.org/10.1016/j.str.2021.06.001
  13. Gustafsson, M.G. (2005). Nonlinear structured-illumination microscopy: wide-field fluorescence imaging with theoretically unlimited resolution. Proc. Natl. Acad. Sci. U. S. A. 102, 13081-13086. https://doi.org/10.1073/pnas.0406877102
  14. Gwosch, K.C., Pape, J.K., Balzarotti, F., Hoess, P., Ellenberg, J., Ries, J., and Hell, S.W. (2020). MINFLUX nanoscopy delivers 3D multicolor nanometer resolution in cells. Nat. Methods 17, 217-224. https://doi.org/10.1038/s41592-019-0688-0
  15. Hauser, M., Wojcik, M., Kim, D., Mahmoudi, M., Li, W., and Xu, K. (2017). Correlative super-resolution microscopy: new dimensions and new opportunities. Chem. Rev. 117, 7428-7456. https://doi.org/10.1021/acs.chemrev.6b00604
  16. Hell, S.W. and Wichmann, J. (1994). Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy. Opt. Lett. 19, 780-782. https://doi.org/10.1364/OL.19.000780
  17. Hoffman, D.P., Shtengel, G., Xu, C.S., Campbell, K.R., Freeman, M., Wang, L., Milkie, D.E., Pasolli, H.A., Iyer, N., Bogovic, J.A., et al. (2020). Correlative three-dimensional super-resolution and block-face electron microscopy of whole vitreously frozen cells. Science 367, eaaz5357. https://doi.org/10.1126/science.aaz5357
  18. Huang, R., Feng, F.P., Huang, C.H., Mao, L., Tang, M., Yan, Z.Y., Shao, B., Qin, L., Xu, T., Xue, Y.H., et al. (2020). Chiral Os (II) polypyridyl complexes as enantioselective nuclear DNA imaging agents especially suitable for correlative high-resolution light and electron microscopy studies. ACS Appl. Mater. Interfaces 12, 3465-3473. https://doi.org/10.1021/acsami.9b19776
  19. Johnson, E., Seiradake, E., Jones, E.Y., Davis, I., Grunewald, K., and Kaufmann, R. (2015). Correlative in-resin super-resolution and electron microscopy using standard fluorescent proteins. Sci. Rep. 5, 9583. https://doi.org/10.1038/srep09583
  20. Jun, S., Ro, H.J., Bharda, A., Kim, S.I., Jeoung, D., and Jung, H.S. (2019). Advances in cryo-correlative light and electron microscopy: applications for studying molecular and cellular events. Protein J. 38, 609-615. https://doi.org/10.1007/s10930-019-09856-1
  21. Jung, M., Kim, D., and Mun, J.Y. (2020). Direct visualization of actin filaments and actin-binding proteins in neuronal cells. Front. Cell Dev. Biol. 8, 588556. https://doi.org/10.3389/fcell.2020.588556
  22. Kim, D., Deerinck, T.J., Sigal, Y.M., Babcock, H.P., Ellisman, M.H., and Zhuang, X. (2015). Correlative stochastic optical reconstruction microscopy and electron microscopy. PLoS One 10, e0124581. https://doi.org/10.1371/journal.pone.0124581
  23. Kim, G.H., Chung, J., Park, H., and Kim, D. (2021a). Single-molecule sensing by grating-based spectrally resolved super-resolution microscopy. Bull. Korean Chem. Soc. 42, 270-278. https://doi.org/10.1002/bkcs.12176
  24. Kim, Y., Kim, T.K., Shin, Y., Tak, E., Song, G.W., Oh, Y.M., Kim, J.K., and Pack, C.G. (2021b). Characterizing organelles in live stem cells using label-free optical diffraction tomography. Mol. Cells 44, 851-860. https://doi.org/10.14348/molcells.2021.0190
  25. Kopek, B.G., Shtengel, G., Grimm, J.B., Clayton, D.A., and Hess, H.F. (2013). Correlative photoactivated localization and scanning electron microscopy. PLoS One 8, e77209. https://doi.org/10.1371/journal.pone.0077209
  26. Kopek, B.G., Shtengel, G., Xu, C.S., Clayton, D.A., and Hess, H.F. (2012). Correlative 3D superresolution fluorescence and electron microscopy reveal the relationship of mitochondrial nucleoids to membranes. Proc. Natl. Acad. Sci. U. S. A. 109, 6136-6141. https://doi.org/10.1073/pnas.1121558109
  27. Liu, B., Xue, Y., Zhao, W., Chen, Y., Fan, C., Gu, L., Zhang, Y., Zhang, X., Sun, L., Huang, X., et al. (2015). Three-dimensional super-resolution protein localization correlated with vitrified cellular context. Sci. Rep. 5, 13017. https://doi.org/10.1038/srep13017
  28. Loschberger, A., Franke, C., Krohne, G., van de Linde, S., and Sauer, M. (2014). Correlative super-resolution fluorescence and electron microscopy of the nuclear pore complex with molecular resolution. J. Cell Sci. 127, 4351-4355. https://doi.org/10.1242/jcs.156620
  29. Muller, A., Neukam, M., Ivanova, A., Sonmez, A., Munster, C., Kretschmar, S., Kalaidzidis, Y., Kurth, T., Verbavatz, J.M., and Solimena, M. (2017). A global approach for quantitative super resolution and electron microscopy on cryo and epoxy sections using self-labeling protein tags. Sci. Rep. 7, 23. https://doi.org/10.1038/s41598-017-00033-x
  30. Paez-Segala, M.G., Sun, M.G., Shtengel, G., Viswanathan, S., Baird, M.A., Macklin, J.J., Patel, R., Allen, J.R., Howe, E.S., Piszczek, G., et al. (2015). Fixation-resistant photoactivatable fluorescent proteins for CLEM. Nat. Methods 12, 215-218. https://doi.org/10.1038/nmeth.3225
  31. Perkovic, M., Kunz, M., Endesfelder, U., Bunse, S., Wigge, C., Yu, Z., Hodirnau, V.V., Scheffer, M.P., Seybert, A., Malkusch, S., et al. (2014). Correlative light-and electron microscopy with chemical tags. J. Struct. Biol. 186, 205-213. https://doi.org/10.1016/j.jsb.2014.03.018
  32. Prabhakar, N., Peurla, M., Koho, S., Deguchi, T., Nareoja, T., Chang, H.C., Rosenholm, J.M., and Hanninen, P.E. (2018). STED-TEM correlative microscopy leveraging nanodiamonds as intracellular dual-contrast markers. Small 14, 1701807. https://doi.org/10.1002/smll.201701807
  33. Robichaux, M.A., Potter, V.L., Zhang, Z., He, F., Liu, J., Schmid, M.F., and Wensel, T.G. (2019). Defining the layers of a sensory cilium with STORM and cryoelectron nanoscopy. Proc. Natl. Acad. Sci. U. S. A. 116, 23562-23572. https://doi.org/10.1073/pnas.1902003116
  34. Rust, M.J., Bates, M., and Zhuang, X. (2006). Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM). Nat. Methods 3, 793-796. https://doi.org/10.1038/nmeth929
  35. Schmidt, R., Weihs, T., Wurm, C.A., Jansen, I., Rehman, J., Sahl, S.J., and Hell, S.W. (2021). MINFLUX nanometer-scale 3D imaging and microsecond-range tracking on a common fluorescence microscope. Nat. Commun. 12, 1478. https://doi.org/10.1038/s41467-021-21652-z
  36. Sochacki, K.A., Shtengel, G., Van Engelenburg, S.B., Hess, H.F., and Taraska, J.W. (2014). Correlative super-resolution fluorescence and metal-replica transmission electron microscopy. Nat. Methods 11, 305-308. https://doi.org/10.1038/nmeth.2816
  37. Sochacki, K.A. and Taraska, J.W. (2021). Find your coat: using correlative light and electron microscopy to study intracellular protein coats. Curr. Opin. Cell Biol. 71, 21-28. https://doi.org/10.1016/j.ceb.2021.01.013
  38. Suleiman, H., Zhang, L., Roth, R., Heuser, J.E., Miner, J.H., Shaw, A.S., and Dani, A. (2013). Nanoscale protein architecture of the kidney glomerular basement membrane. Elife 2, e01149. https://doi.org/10.7554/elife.01149
  39. Tian, X., De Pace, C., Ruiz-Perez, L., Chen, B., Su, R., Zhang, M., Zhang, R., Zhang, Q., Wang, Q., Zhou, H., et al. (2020). A cyclometalated iridium (III) complex as a microtubule probe for correlative super-resolution fluorescence and electron microscopy. Adv. Mater. 32, e2003901.
  40. Tuijtel, M.W., Mulder, A.A., Posthuma, C.C., van der Hoeven, B., Koster, A.J., Barcena, M., Faas, F.G., and Sharp, T.H. (2017). Inducing fluorescence of uranyl acetate as a dual-purpose contrast agent for correlative lightelectron microscopy with nanometre precision. Sci. Rep. 7, 10442. https://doi.org/10.1038/s41598-017-10905-x
  41. Van Engelenburg, S.B., Shtengel, G., Sengupta, P., Waki, K., Jarnik, M., Ablan, S.D., Freed, E.O., Hess, H.F., and Lippincott-Schwartz, J. (2014). Distribution of ESCRT machinery at HIV assembly sites reveals virus scaffolding of ESCRT subunits. Science 343, 653-656. https://doi.org/10.1126/science.1247786
  42. Watanabe, S., Punge, A., Hollopeter, G., Willig, K.I., Hobson, R.J., Davis, M.W., Hell, S.W., and Jorgensen, E.M. (2011). Protein localization in electron micrographs using fluorescence nanoscopy. Nat. Methods 8, 80-84. https://doi.org/10.1038/nmeth.1537
  43. Wojcik, M., Hauser, M., Li, W., Moon, S., and Xu, K. (2015). Graphene-enabled electron microscopy and correlated super-resolution microscopy of wet cells. Nat. Commun. 6, 7384. https://doi.org/10.1038/ncomms8384
  44. Wolff, G., Hagen, C., Grunewald, K., and Kaufmann, R. (2016). Towards correlative super-resolution fluorescence and electron cryo-microscopy. Biol. Cell 108, 245-258. https://doi.org/10.1111/boc.201600008
  45. Wurm, C.A., Schwarz, H., Jans, D.C., Riedel, D., Humbel, B.M., and Jakobs, S. (2019). Correlative STED super-resolution light and electron microscopy on resin sections. J. Phys. D Appl. Phys. 52, 374003. https://doi.org/10.1088/1361-6463/ab2b31
  46. Zou, N., Chen, G., Mao, X., Shen, H., Choudhary, E., Zhou, X., and Chen, P. (2018). Imaging catalytic hotspots on single plasmonic nanostructures via correlated super-resolution and electron microscopy. ACS Nano 12, 5570-5579. https://doi.org/10.1021/acsnano.8b01338