DOI QR코드

DOI QR Code

Single-Molecule Methods for Investigating the Double-Stranded DNA Bendability

  • Yeou, Sanghun (Department of Physics, Pohang University of Science and Technology) ;
  • Lee, Nam Ki (Department of Chemistry, Seoul National University)
  • Received : 2021.07.09
  • Accepted : 2021.07.20
  • Published : 2022.01.31

Abstract

The various DNA-protein interactions associated with the expression of genetic information involve double-stranded DNA (dsDNA) bending. Due to the importance of the formation of the dsDNA bending structure, dsDNA bending properties have long been investigated in the biophysics field. Conventionally, DNA bendability is characterized by innate averaging data from bulk experiments. The advent of single-molecule methods, such as atomic force microscopy, optical and magnetic tweezers, tethered particle motion, and single-molecule fluorescence resonance energy transfer measurement, has provided valuable tools to investigate not only the static structures but also the dynamic properties of bent dsDNA. Here, we reviewed the single-molecule methods that have been used for investigating dsDNA bendability and new findings related to dsDNA bending. Single-molecule approaches are promising tools for revealing the unknown properties of dsDNA related to its bending, particularly in cells.

Keywords

Acknowledgement

This work was supported by the Creative-Pioneering Researchers Program of Seoul National University and NRF-2020R1A5A1019141 and NRF-2019R1A2C2090896 of the National Research Foundation of Korea.

References

  1. Ashkin, A. (1997). Optical trapping and manipulation of neutral particles usinglasers. Proc. Natl. Acad. Sci. U. S. A. 94, 4853-4860. https://doi.org/10.1073/pnas.94.10.4853
  2. Ashkin, A., Dziedzic, J.M., Bjorkholm, J.E., and Chu, S. (1986). Observation of a single-beam gradient force optical trap for dielectric particles. Opt. Lett. 11, 288-290. https://doi.org/10.1364/OL.11.000288
  3. Basu, A., Bobrovnikov, D.G., and Ha, T. (2021a). DNA mechanics and its biological impact. J. Mol. Biol. 433, 166861. https://doi.org/10.1016/j.jmb.2021.166861
  4. Basu, A., Bobrovnikov, D.G., Qureshi, Z., Kayikcioglu, T., Ngo, T.T.M., Ranjan, A., Eustermann, S., Cieza, B., Morgan, M.T., Hejna, M., et al. (2021b). Measuring DNA mechanics on the genome scale. Nature 589, 462-467. https://doi.org/10.1038/s41586-020-03052-3
  5. Baumann, C.G., Bloomfield, V.A., Smith, S.B., Bustamante, C., Wang, M.D., and Block, S.M. (2000). Stretching of single collapsed DNA molecules. Biophys. J. 78, 1965-1978. https://doi.org/10.1016/S0006-3495(00)76744-0
  6. Ben-Shaul, A. (2013). Entropy, energy, and bending of DNA in viral capsids. Biophys. J. 104, L15-L17. https://doi.org/10.1016/j.bpj.2013.04.006
  7. Bhairosing-Kok, D., Groothuizen, F.S., Fish, A., Dharadhar, S., Winterwerp, H.H.K., and Sixma, T.K. (2019). Sharp kinking of a coiled-coil in MutS allows DNA binding and release. Nucleic Acids Res. 47, 8888-8898. https://doi.org/10.1093/nar/gkz649
  8. Binnig, G., Quate, C.F., and Gerber, C. (1986). Atomic force microscope. Phys. Rev. Lett. 56, 930-933. https://doi.org/10.1103/PhysRevLett.56.930
  9. Brahmachari, S. and Marko, J.F. (2018). DNA mechanics and topology. In Biomechanics in Oncology, C. Dong, N. Zahir, and K. Konstantopoulos, eds. (Cham: Springer International Publishing), pp. 11-39.
  10. Brinkers, S., Dietrich, H.R.C., de Groote, F.H., Young, I.T., and Rieger, B. (2009). The persistence length of double stranded DNA determined using dark field tethered particle motion. J. Chem. Phys. 130, 215105. https://doi.org/10.1063/1.3142699
  11. Brunet, A., Chevalier, S., Destainville, N., Manghi, M., Rousseau, P., Salhi, M., Salome, L., and Tardin, C. (2015a). Probing a label-free local bend in DNA by single molecule tethered particle motion. Nucleic Acids Res. 43, e72. https://doi.org/10.1093/nar/gkv201
  12. Brunet, A., Salome, L., Rousseau, P., Destainville, N., Manghi, M., and Tardin, C. (2018). How does temperature impact the conformation of single DNA molecules below melting temperature? Nucleic Acids Res. 46, 2074-2081. https://doi.org/10.1093/nar/gkx1285
  13. Brunet, A., Tardin, C., Salome, L., Rousseau, P., Destainville, N., and Manghi, M. (2015b). Dependence of DNA persistence length on ionic strength of solutions with monovalent and divalent salts: a joint theory-experiment study. Macromolecules 48, 3641-3652. https://doi.org/10.1021/acs.macromol.5b00735
  14. Cai, X., Arias, D.S., Velazquez, L.R., Vexler, S., Bevier, A.L., and Fygenson, D.K. (2020). DNA nunchucks: nanoinstrumentation for single-molecule measurement of stiffness and bending. Nano Lett. 20, 1388-1395. https://doi.org/10.1021/acs.nanolett.9b04980
  15. Cassina, V., Manghi, M., Salerno, D., Tempestini, A., Iadarola, V., Nardo, L., Brioschi, S., and Mantegazza, F. (2016). Effects of cytosine methylation on DNA morphology: an atomic force microscopy study. Biochim. Biophys. Acta 1860(1 Pt A), 1-7. https://doi.org/10.1016/j.bbagen.2015.10.006
  16. Chen, H., Fu, H., Zhou, Z., and Yan, J. (2010). Non-harmonic DNA bending elasticity is revealed by statistics of DNA minicircle shapes. Int. J. Mod. Phys. B 24, 5475-5485. https://doi.org/10.1142/S0217979210056682
  17. Cloutier, T.E. and Widom, J. (2004). Spontaneous sharp bending of double-stranded DNA. Mol. Cell 14, 355-362. https://doi.org/10.1016/S1097-2765(04)00210-2
  18. Driessen, R.P.C., Sitters, G., Laurens, N., Moolenaar, G.F., Wuite, G.J.L., Goosen, N., and Dame, R.T. (2014). Effect of temperature on the intrinsic flexibility of DNA and its interaction with architectural proteins. Biochemistry 53, 6430-6438. https://doi.org/10.1021/bi500344j
  19. Du, Q., Smith, C., Shiffeldrim, N., Vologodskaia, M., and Vologodskii, A. (2005). Cyclization of short DNA fragments and bending fluctuations of the double helix. Proc. Natl. Acad. Sci. U. S. A. 102, 5397-5402. https://doi.org/10.1073/pnas.0500983102
  20. Fan, H.F., Ma, C.H., and Jayaram, M. (2018). Single-molecule tethered particle motion: stepwise analyses of site-specific DNA recombination. Micromachines (Basel) 9, 216. https://doi.org/10.3390/mi9050216
  21. Fields, A.P., Meyer, E.A., and Cohen, A.E. (2013). Euler buckling and nonlinear kinking of double-stranded DNA. Nucleic Acids Res. 41, 9881-9890. https://doi.org/10.1093/nar/gkt739
  22. Forster, T. (1946). [Energiewanderung und Fluoreszenz]. Naturwissenschaften 33, 166-175. German. https://doi.org/10.1007/BF00585226
  23. Forties, R.A., Bundschuh, R., and Poirier, M.G. (2009). The flexibility of locally melted DNA. Nucleic Acids Res. 37, 4580-4586. https://doi.org/10.1093/nar/gkp442
  24. Garcia, H.G., Grayson, P., Han, L., Inamdar, M., Kondev, J., Nelson, P.C., Phillips, R., Widom, J., and Wiggins, P.A. (2007). Biological consequences of tightly bent DNA: the other life of a macromolecular celebrity. Biopolymers 85, 115-130. https://doi.org/10.1002/bip.20627
  25. Geggier, S., Kotlyar, A., and Vologodskii, A. (2011). Temperature dependence of DNA persistence length. Nucleic Acids Res. 39, 1419-1426. https://doi.org/10.1093/nar/gkq932
  26. Geggier, S. and Vologodskii, A. (2010). Sequence dependence of DNA bending rigidity. Proc. Natl. Acad. Sci. U. S. A. 107, 15421-15426. https://doi.org/10.1073/pnas.1004809107
  27. Guilbaud, S., Salome, L., Destainville, N., Manghi, M., and Tardin, C. (2019). Dependence of DNA persistence length on ionic strength and ion type. Phys. Rev. Lett. 122, 028102. https://doi.org/10.1103/PhysRevLett.122.028102
  28. Ha, T., Enderle, T., Ogletree, D.F., Chemla, D.S., Selvin, P.R., and Weiss, S. (1996). Probing the interaction between two single molecules: fluorescence resonance energy transfer between a single donor and a single acceptor. Proc. Natl. Acad. Sci. U. S. A. 93, 6264-6268. https://doi.org/10.1073/pnas.93.13.6264
  29. Hagerman, P.J. (1988). Flexibility of DNA. Annu. Rev. Biophys. Biophys. Chem. 17, 265-286. https://doi.org/10.1146/annurev.bb.17.060188.001405
  30. Han, L., Garcia, H.G., Blumberg, S., Towles, K.B., Beausang, J.F., Nelson, P.C., and Phillips, R. (2009). Concentration and length dependence of DNA looping in transcriptional regulation. PLoS One 4, e5621. https://doi.org/10.1371/journal.pone.0005621
  31. Harrington, R.E. (1993). Studies of DNA bending and flexibility using gel electrophoresis. Electrophoresis 14, 732-746. https://doi.org/10.1002/elps.11501401116
  32. Hellenkamp, B., Schmid, S., Doroshenko, O., Opanasyuk, O., Kuhnemuth, R., Rezaei Adariani, S., Ambrose, B., Aznauryan, M., Barth, A., Birkedal, V., et al. (2018). Precision and accuracy of single-molecule FRET measurements-a multi-laboratory benchmark study. Nat. Methods 15, 669-676. https://doi.org/10.1038/s41592-018-0085-0
  33. Hildebrandt, L.L., Preus, S., and Birkedal, V. (2015). Quantitative single molecule FRET efficiencies using TIRF microscopy. Faraday Discuss. 184, 131-142. https://doi.org/10.1039/c5fd00100e
  34. Jeong, J. and Kim, H.D. (2019). Base-pair mismatch can destabilize small DNA loops through cooperative kinking. Phys. Rev. Lett. 122, 218101. https://doi.org/10.1103/physrevlett.122.218101
  35. Jeong, J. and Kim, H.D. (2020). Determinants of cyclization-decyclization kinetics of short DNA with sticky ends. Nucleic Acids Res. 48, 5147-5156. https://doi.org/10.1093/nar/gkaa207
  36. Kang, J., Jung, J., and Kim, S.K. (2014). Flexibility of single-stranded DNA measured by single-molecule FRET. Biophys. Chem. 195, 49-52. https://doi.org/10.1016/j.bpc.2014.08.004
  37. Kang, Y., Cho, C., Lee, K.S., Song, J.J., and Lee, J.Y. (2021). Single-molecule imaging reveals the mechanism underlying histone loading of Schizosaccharomyces pombe AAA+ ATPase Abo1. Mol. Cells 44, 79-87. https://doi.org/10.14348/molcells.2021.2242
  38. Kapanidis, A.N., Lee, N.K., Laurence, T.A., Doose, S., Margeat, E., and Weiss, S. (2004). Fluorescence-aided molecule sorting: analysis of structure and interactions by alternating-laser excitation of single molecules. Proc. Natl. Acad. Sci. U. S. A. 101, 8936-8941. https://doi.org/10.1073/pnas.0401690101
  39. Kim, C., Lee, O.C., Kim, J.Y., Sung, W., and Lee, N.K. (2015). Dynamic release of bending stress in short dsDNA by formation of a kink and forks. Angew. Chem. Int. Ed. Engl. 54, 8943-8947. https://doi.org/10.1002/anie.201502055
  40. Kim, S., Song, H.S., Yu, J., and Kim, Y.M. (2021a). MiT family transcriptional factors in immune cell functions. Mol. Cells 44, 342-355. https://doi.org/10.14348/molcells.2021.0067
  41. Kim, S.H., Kim, H., Jeong, H., and Yoon, T.Y. (2021b). Encoding multiple virtual signals in DNA barcodes with single-molecule FRET. Nano Lett. 21, 1694-1701. https://doi.org/10.1021/acs.nanolett.0c04502
  42. Kratky, O. and Porod, G. (1949). [Rontgenuntersuchung geloster Fadenmolekule]. Recl. Trav. Chim. Pays Bas 68, 1106-1122. German. https://doi.org/10.1002/recl.19490681203
  43. Le, T.T. and Kim, H.D. (2014). Probing the elastic limit of DNA bending. Nucleic Acids Res. 42, 10786-10794. https://doi.org/10.1093/nar/gku735
  44. Lee, D.H. and Schleif, R.F. (1989). In vivo DNA loops in araCBAD: size limits and helical repeat. Proc. Natl. Acad. Sci. U. S. A. 86, 476-480. https://doi.org/10.1073/pnas.86.2.476
  45. Lee, N.K., Kapanidis, A.N., Wang, Y., Michalet, X., Mukhopadhyay, J., Ebright, R.H., and Weiss, S. (2005). Accurate FRET measurements within single diffusing biomolecules using alternating-laser excitation. Biophys. J. 88, 2939-2953. https://doi.org/10.1529/biophysj.104.054114
  46. Lee, O.C., Kim, C., Kim, J.Y., Lee, N.K., and Sung, W. (2016). Two conformational states in D-shaped DNA: effects of local denaturation. Sci. Rep. 6, 28239. https://doi.org/10.1038/srep28239
  47. Lerner, E., Barth, A., Hendrix, J., Ambrose, B., Birkedal, V., Blanchard, S.C., Borner, R., Sung Chung, H., Cordes, T., Craggs, T.D., et al. (2021). FRET-based dynamic structural biology: challenges, perspectives and an appeal for open-science practices. Elife 10, e60416. https://doi.org/10.7554/eLife.60416
  48. Luger, K., Mader, A.W., Richmond, R.K., Sargent, D.F., and Richmond, T.J. (1997). Crystal structure of the nucleosome core particle at 2.8A resolution. Nature 389, 251-260. https://doi.org/10.1038/38444
  49. Marko, J.F. and Siggia, E.D. (1995). Stretching DNA. Macromolecules 28, 8759-8770. https://doi.org/10.1021/ma00130a008
  50. Murphy, M.C., Rasnik, I., Cheng, W., Lohman, T.M., and Ha, T. (2004). Probing single-stranded DNA conformational flexibility using fluorescence spectroscopy. Biophys. J. 86, 2530-2537. https://doi.org/10.1016/S0006-3495(04)74308-8
  51. Napoli, A., Zivanovic, Y., Bocs, C., Buhler, C., Rossi, M., Forterre, P., and Ciaramella, M. (2002). DNA bending, compaction and negative supercoiling by the architectural protein Sso7d of Sulfolobus solfataricus. Nucleic Acids Res. 30, 2656-2662. https://doi.org/10.1093/nar/gkf377
  52. Nathan, D. and Crothers, D.M. (2002). Bending and flexibility of methylated and unmethylated EcoRI DNA. J. Mol. Biol. 316, 7-17. https://doi.org/10.1006/jmbi.2001.5247
  53. Ngo, T.T.M., Yoo, J., Dai, Q., Zhang, Q., He, C., Aksimentiev, A., and Ha, T. (2016). Effects of cytosine modifications on DNA flexibility and nucleosome mechanical stability. Nat. Commun. 7, 10813. https://doi.org/10.1038/ncomms10813
  54. Pavlicek, J.W., Oussatcheva, E.A., Sinden, R.R., Potaman, V.N., Sankey, O.F., and Lyubchenko, Y.L. (2004). Supercoiling-induced DNA bending. Biochemistry 43, 10664-10668. https://doi.org/10.1021/bi0362572
  55. Peters, J.P. and Maher, L.J. (2018). Approaches for determining DNA persistence length using atomic force microscopy. In Bacterial Chromatin: Methods and Protocols, R.T. Dame, ed. (New York: Springer New York), pp. 211-256.
  56. Pongor, C.I., Bianco, P., Ferenczy, G., Kellermayer, R., and Kellermayer, M. (2017). Optical trapping nanometry of hypermethylated CpG-island DNA. Biophys. J. 112, 512-522. https://doi.org/10.1016/j.bpj.2016.12.029
  57. Prinsen, P. and Schiessel, H. (2010). Nucleosome stability and accessibility of its DNA to proteins. Biochimie 92, 1722-1728. https://doi.org/10.1016/j.biochi.2010.08.008
  58. Privalov, P.L., Dragan, A.I., and Crane-Robinson, C. (2009). The cost of DNA bending. Trends Biochem. Sci. 34, 464-470. https://doi.org/10.1016/j.tibs.2009.05.005
  59. Protozanova, E., Yakovchuk, P., and Frank-Kamenetskii, M.D. (2004). Stacked-unstacked equilibrium at the nick site of DNA. J. Mol. Biol. 342, 775-785. https://doi.org/10.1016/j.jmb.2004.07.075
  60. Purohit, P.K., Kondev, J., and Phillips, R. (2003). Mechanics of DNA packaging in viruses. Proc. Natl. Acad. Sci. U. S. A. 100, 3173-3178. https://doi.org/10.1073/pnas.0737893100
  61. Pyne, A.L.B., Noy, A., Main, K.H.S., Velasco-Berrelleza, V., Piperakis, M.M., Mitchenall, L.A., Cugliandolo, F.M., Beton, J.G., Stevenson, C.E.M., Hoogenboom, B.W., et al. (2021). Base-pair resolution analysis of the effect of supercoiling on DNA flexibility and major groove recognition by triplex-forming oligonucleotides. Nat. Commun. 12, 1053. https://doi.org/10.1038/s41467-021-21243-y
  62. Qu, H., Wang, Y., Tseng, C.Y., and Zocchi, G. (2011). Critical torque for kink formation in double-stranded DNA. Phys. Rev. X 1, 021008.
  63. Ray, P.C., Fan, Z., Crouch, R.A., Sinha, S.S., and Pramanik, A. (2014). Nanoscopic optical rulers beyond the FRET distance limit: fundamentals and applications. Chem. Soc. Rev. 43, 6370-6404. https://doi.org/10.1039/C3CS60476D
  64. Richmond, T.J. and Davey, C.A. (2003). The structure of DNA in the nucleosome core. Nature 423, 145-150. https://doi.org/10.1038/nature01595
  65. Roth, E., Glick Azaria, A., Girshevitz, O., Bitler, A., and Garini, Y. (2018). Measuring the conformation and persistence length of single-stranded DNA using a DNA origami structure. Nano Lett. 18, 6703-6709. https://doi.org/10.1021/acs.nanolett.8b02093
  66. Saran, R., Wang, Y., and Li, I.T.S. (2020). Mechanical flexibility of DNA: a quintessential tool for DNA nanotechnology. Sensors (Basel) 20, 7019. https://doi.org/10.3390/s20247019
  67. Sarangi, M.K., Zvoda, V., Holte, M.N., Becker, N.A., Peters, J.P., Maher, L.J., III, and Ansari, A. (2019). Evidence for a bind-then-bend mechanism for architectural DNA binding protein yNhp6A. Nucleic Acids Res. 47, 2871-2883. https://doi.org/10.1093/nar/gkz022
  68. Satange, R., Chang, C.K., and Hou, M.H. (2018). A survey of recent unusual high-resolution DNA structures provoked by mismatches, repeats and ligand binding. Nucleic Acids Res. 46, 6416-6434. https://doi.org/10.1093/nar/gky561
  69. Schafer, D.A., Gelles, J., Sheetz, M.P., and Landick, R. (1991). Transcription by single molecules of RNA polymerase observed by light microscopy. Nature 352, 444-448. https://doi.org/10.1038/352444a0
  70. Shon, M.J., Rah, S.H., and Yoon, T.Y. (2019). Submicrometer elasticity of double-stranded DNA revealed by precision force-extension measurements with magnetic tweezers. Sci. Adv. 5, eaav1697. https://doi.org/10.1126/sciadv.aav1697
  71. Shore, D., Langowski, J., and Baldwin, R.L. (1981). DNA flexibility studied by covalent closure of short fragments into circles. Proc. Natl. Acad. Sci. U. S. A. 78, 4833-4837. https://doi.org/10.1073/pnas.78.8.4833
  72. Shroff, H., Reinhard, B.M., Siu, M., Agarwal, H., Spakowitz, A., and Liphardt, J. (2005). Biocompatible force sensor with optical readout and dimensions of 6 nm3. Nano Lett. 5, 1509-1514. https://doi.org/10.1021/nl050875h
  73. Shroff, H., Sivak, D., Siegel, J.J., McEvoy, A.L., Siu, M., Spakowitz, A., Geissler, P.L., and Liphardt, J. (2008). Optical measurement of mechanical forces inside short DNA loops. Biophys. J. 94, 2179-2186. https://doi.org/10.1529/biophysj.107.114413
  74. Slutsky, M. (2005). Diffusion in a half-space: from Lord Kelvin to path integrals. Am. J. Phys. 73, 308-314. https://doi.org/10.1119/1.1842734
  75. Smith, S.B., Cui, Y., and Bustamante, C. (1996). Overstretching B-DNA: the elastic response of individual double-stranded and single-stranded DNA molecules. Science 271, 795-799. https://doi.org/10.1126/science.271.5250.795
  76. Smith, S.B., Finzi, L., and Bustamante, C. (1992). Direct mechanical measurements of the elasticity of single DNA molecules by using magnetic beads. Science 258, 1122-1126. https://doi.org/10.1126/science.1439819
  77. Strick, T.R., Allemand, J.F., Bensimon, D., Bensimon, A., and Croquette, V. (1996). The elasticity of a single supercoiled DNA molecule. Science 271, 1835-1837. https://doi.org/10.1126/science.271.5257.1835
  78. Tan, C., Terakawa, T., and Takada, S. (2016). Dynamic coupling among protein binding, sliding, and DNA bending revealed by molecular dynamics. J. Am. Chem. Soc. 138, 8512-8522. https://doi.org/10.1021/jacs.6b03729
  79. Vafabakhsh, R. and Ha, T. (2012). Extreme bendability of DNA less than 100 base pairs long revealed by single-molecule cyclization. Science 337, 1097-1101. https://doi.org/10.1126/science.1224139
  80. van der Vliet, P.C. and Verrijzer, C.P. (1993). Bending of DNA by transcription factors. Bioessays 15, 25-32. https://doi.org/10.1002/bies.950150105
  81. van Mameren, J., Gross, P., Farge, G., Hooijman, P., Modesti, M., Falkenberg, M., Wuite, G.J.L., and Peterman, E.J.G. (2009). Unraveling the structure of DNA during overstretching by using multicolor, single-molecule fluorescence imaging. Proc. Natl. Acad. Sci. U. S. A. 106, 18231-18236. https://doi.org/10.1073/pnas.0904322106
  82. Vologodskii, A. and Frank-Kamenetskii, M.D. (2013). Strong bending of the DNA double helix. Nucleic Acids Res. 41, 6785-6792. https://doi.org/10.1093/nar/gkt396
  83. Wang, D.X., Wang, J., Wang, Y.X., Du, Y.C., Huang, Y., Tang, A.N., Cui, Y.X., and Kong, D.M. (2021). DNA nanostructure-based nucleic acid probes: construction and biological applications. Chem. Sci. 12, 7602-7622. https://doi.org/10.1039/D1SC00587A
  84. Waters, J.T. and Kim, H.D. (2013). Equilibrium statistics of a surface-pinned semiflexible polymer. Macromolecules 46, 6659-6666. https://doi.org/10.1021/ma4011704
  85. Wiggins, P.A., van der Heijden, T., Moreno-Herrero, F., Spakowitz, A., Phillips, R., Widom, J., Dekker, C., and Nelson, P.C. (2006). High flexibility of DNA on short length scales probed by atomic force microscopy. Nat. Nanotechnol. 1, 137-141. https://doi.org/10.1038/nnano.2006.63
  86. Yakovchuk, P., Protozanova, E., and Frank-Kamenetskii, M.D. (2006). Base-stacking and base-pairing contributions into thermal stability of the DNA double helix. Nucleic Acids Res. 34, 564-574. https://doi.org/10.1093/nar/gkj454
  87. Yeou, S. and Lee, N.K. (2021). Contribution of a DNA nick to DNA bendability depending on the bending force. Bull. Korean Chem. Soc. 2021 Jul 4 [Epub]. https://doi.org/10.1002/bkcs.12351
  88. Yoo, J. (2021). On the stability of protein-DNA complexes in molecular dynamics simulations using the CUFIX corrections. J. Korean Phys. Soc. 78, 461-466. https://doi.org/10.1007/s40042-021-00063-9
  89. Yoo, J., Kim, H., Aksimentiev, A., and Ha, T. (2016). Direct evidence for sequence-dependent attraction between double-stranded DNA controlled by methylation. Nat. Commun. 7, 11045. https://doi.org/10.1038/ncomms11045
  90. Zlatanova, J. and van Holde, K. (2006). Single-molecule biology: what is it and how does it work? Mol. Cell 24, 317-329. https://doi.org/10.1016/j.molcel.2006.10.017