References
- Simpson CL, Patel DM, Green KJ. Deconstructing the skin: cytoarchitectural determinants of epidermal morphogenesis. Nature Reviews of Molecular Cell Biology. 2011;12(9):565-80. https://doi.org/10.1038/nrm3175
- Barrientos S, Stojadinovic O, Golinko MS, Brem H, Tomic-Canic M. Growth factors and cytokines in wound healing. Wound Repair and Regeneration. 2008;16(5):585-601. https://doi.org/10.1111/j.1524-475X.2008.00410.x
- Reinke JM, Sorg H. Wound repair and regeneration. European Surgical Research. 2012;49(1):35-43. https://doi.org/10.1159/000339613
- Han ST, Whang WK, Kim IH, Yang BW, Cho SH, Ko SK. Analysis of ginsenosides of black ginseng. Archives of Pharmacal Research. 2005;49(6):490-4.
- Kim SN, Kang SJ. Effects of black ginseng (9 times steaming ginseng) on hypoglycemic action and changes in the composition of ginsenosides on the steaming process. Korean Journal of Food Science and Technology. 2009;41(1):77-81.
- Nam KY, Lee NR, Moon BD, Song GY, Shin HS, Choi JE. Changes of ginsenosides and color from black ginsengs prepared by steaming-drying cycles. Korean Journal of Medicinal Crop Science. 2012;20(1):27-35. https://doi.org/10.7783/KJMCS.2012.20.1.027
- Kim HJ, Lee JY, You BR, Kim HR, Choi JE, Nam KY, Moon BD, Kim MR. Antioxidant activities of ethanol extracts from black ginseng prepared by steaming-drying cycles. Journal of the Korean Society of Food Science and Nutrition. 2011;40(2):156-62. https://doi.org/10.3746/JKFN.2011.40.2.156
- Kim MY, Kwon OJ, Noh JS, Roh SS. Inhibitory activities of water extracts of black ginseng on HCL/ethanol-induced acute gastritis through anti-oxidant effect. Journal of the Korean Society of Food Science and Nutrition. 2016;45(9):1249-56. https://doi.org/10.3746/JKFN.2016.45.9.1249
- Metwaly AM, Lianlian Z, Luqi H, Dequiang D. Black ginseng and its saponins: preparation, phytochemistry and pharmacological effects. Molecules. 2019;24(10):1856. https://doi.org/10.3390/molecules24101856
- Go YJ, Kim YE, Kim HN, Lee EH, Cho EB, Sultanov A, Kwon SI, Cho YJ. Inhibition effect against elastase, collagenase, hyaluronidase and anti-oxidant activity of thinning green ball apple. Journal of Applied Biological Chemistry. 2020;63(1):43-50. https://doi.org/10.3839/jabc.2020.006
- Lister CE, Lancaster JE, Sutton KH, Walker JR. Developmental changes in the concentration and composition of flavonoids in skin of a red and a green apple cultivar. Journal of the Science of Food and Agriculture. 1994;64(2):155-61. https://doi.org/10.1002/jsfa.2740640204
- Blosis MS. Antioxidant determinations by the use of a stable free radical. Nature. 1958;181:1199-200. https://doi.org/10.1038/1811199a0
- Re R, Pellegrini N, Proteggente A, Pannala A, Yang M, Rice-evans C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radical Biology & Medicine. 1999;26:1231-7. https://doi.org/10.1016/S0891-5849(98)00315-3
- Geoffrey CG, Werner S, Barrandon Y, Longaker TM. Wound repair and regeneration. Nature. 2008;453(7193):314-21. https://doi.org/10.1038/nature07039
- Li D, Wang A, Liu X, Meisgen F, Grunler J, Botusan IR, Narayanan S, Erikci E, Li X, Blomqvist L, Du L, Pivarcsi A, Sonkoly E, Chowdhury K, Catrina SB, Stahle M, Landen NX. MicroRNA-132 enhances transition from inflammation to proliferation during wound healing. The Journal of Clinical Investigation. 2015;125(8):3008-26. https://doi.org/10.1172/JCI79052
- Andre-Levigne D, Modarressi A, Pepper MS, Pittet-Cuenod B. Reactive oxygen species and NOX enzymes are emerging as key players in cutaneous wound repair. International Journal of Molecular Sciences. 2017;18(10):2149. https://doi.org/10.3390/ijms18102149
- Keller U, Kumin A, Braun S, Werner S. Reactive oxygen species and their detoxification in healing skin wounds. Journal of Investigative Dermatology Symposium Proceedings. 2006;11(1):106-11. https://doi.org/10.1038/sj.jidsymp.5650001
- The Korean Medicine Society for Herbology. Herbology. Seoul:Yeongrim. 2007:572-4.
- Dzialo M, Mierziak J, Korzun U, Preisner M, Szopa J, Kulma A. The potential of plant phenolics in prevention and therapy of skin disorders. International Journal of Molecular Sciences. 2016;17(2):160. https://doi.org/10.3390/ijms17020160
- Ren W, Qiao Z, Wang H, Zhu L, Zhang L. Flavonoids: promising anticancer agents. Medicinal Research Reviews. 2003;23(4):519-34. https://doi.org/10.1002/med.10033
- Shah A, Amini-Nik S. The role of phytochemicals in the inflammatory phase of wound healing. International Journal of Molecular Sciences. 2017;18(5):1068. https://doi.org/10.3390/ijms18051068
- Kedare SB, Singh RP. Genesis and development of DPPH method of antioxidant assay. Journal of Food Science and Technology. 2011;48(4):412-22. https://doi.org/10.1007/s13197-011-0251-1
- Loria V, Dato I, Graziani F, Biasucci LM. Myeloperoxidase: a new biomarker of inflammation in ischemic heart disease and acute coronary syndromes. Mediators of Inflammation. 2008;2008:135625. https://doi.org/10.1155/2008/135625
- Eming SA, Krieg T, Davidson JM. Inflammation in wound repair: molecular and cellular mechanisms. Journal of Investigative Dermatology. 2007;127(3):514-25. https://doi.org/10.1038/sj.jid.5700701
- Hampton MB, Kettle AJ, Winterbourn CC. Inside th neutrophil phagosome: oxidants, myeloperoxidase, and bacterial killing. Blood. 1998;92(9):3007-17. https://doi.org/10.1182/blood.v92.9.3007.421k47_3007_3017
- Utami ND, Nordin A, Katas H, Idrus RBH, Fauzi MB. Molecular action of hydroxytyrosol in wound healing: an in vitro evidence-based review. Biomolecules. 2020;10(10):1397. https://doi.org/10.3390/biom10101397
- Espinosa-Diez C, Miguel V, Mennerich D, Kietzmann T, Sanchez-Perez P, Cadenas S, Lamas S. Antioxidant responses and cellular adjustments to oxidative stress. Redox Biology. 2015;6:183-97. https://doi.org/10.1016/j.redox.2015.07.008
- Panday A, Sahoo MK, Osorio D, Batra S. NADPH oxidases: an overview from structure to innate immunityassociated pathologies. Cellular & Molecular Immunology. 2015;12(1):5-23. https://doi.org/10.1038/cmi.2014.89
- Mittal M, Roth M, Konig P, Hofmann S, Dony E, Goyal P, Selbitz AC, Schermuly RT, Ghofrani HA, Kwapiszewska G, Kummer W, Klepetko W, Hoda MAR, Fink L, Hanze J, Seeger W, Grimminger F, Schmidt HHHW, Weissmann N. Hypoxia-dependent regulation of nonphagocytic NADPH oxidase subunit NOX4 in the pulmonary vasculature. Circulation Research. 2007;101(3):258-67. https://doi.org/10.1161/CIRCRESAHA.107.148015
- Peshavariya HM, Chan EC, Liu GS, Jiang F, Dusting GJ. Transforming growth factor-β1 requires NADPH oxidase 4 for angiogenesis in vitro and in vivo. Journal of Cellular and Molecular Medicine. 2014;18(6):1172-83. https://doi.org/10.1111/jcmm.12263
- Levigne D, Modarressi A, Krause KH, Pittet-Cuenod B. NADPH oxidase 4 deficiency leads to impaired wound repair and reduced dityrosine-crosslinking, but does not affect myofibroblast formation. Free Radical Biology & Medicine. 2016;96:374-84. https://doi.org/10.1016/j.freeradbiomed.2016.04.194
- Hiebert P, Werner S. Regulation of wound healing by the NRF2 transcription factor-more than cytoprotection. International Journal of Molecular Sciences. 2019;20(16):3856. https://doi.org/10.3390/ijms20163856
- Victor P, Sarada D, Ramkumar KM. Pharmacological activation of Nrf2 promotes wound healing. European Journal of Pharmacology. 2020;886:173395. https://doi.org/10.1016/j.ejphar.2020.173395
- Rabbani PS, Soares MA, Hameedi SG, Kadle RL, Mubasher A, Kowzun M, Ceradini DJ. Dysregulation of Nrf2/Keap1 redox pathway in diabetes affects multipotency of stromal cells. Diabetes. 2019;68(1):141-55. https://doi.org/10.2337/db18-0232
- Landen NX, Li D, Stahle M. Transition from inflammation to proliferation: a critical step during wound healing. Cellular and Molecular Life Sciences. 2016;73(20):3861-85. https://doi.org/10.1007/s00018-016-2268-0
- Abdalla HB, Napimoga MH, Lopes AH, Maganin AGM, Cunha TM, Dyke TEV, Napimoga JTCN. Activation of PPAR-γ induces macrophage polarization and reduces neutrophil migration mediated by heme oxygenase 1. International Immunopharmacology. 2020;84:106565. https://doi.org/10.1016/j.intimp.2020.106565
- Deshane J, Chen S, Caballero S, Grochot-Przeczek A, Was H, Calzi SL, Lach R, Hock TD, Chen B, Hill-Kapturczak N, Siegal GP, Dulak J, Jozkowicz A, Grant MB, Agarwal A. Stromal cell-derived factor 1 promotes angiogenesis via a heme oxygenase 1-dependent mechanism. Journal of Experimental Medicine. 2007;204(3):605-18. https://doi.org/10.1084/jem.20061609
- Fridovich I. Superoxide radical and superoxide dismutases. Annual Review of Biochemistry. 1995;64(1):97-112. https://doi.org/10.1146/annurev.bi.64.070195.000525
- Ceradini DJ, Yao D, Grogan RH, Callaghan MJ, Edelstein D, Brownlee M, Gurtner GC. Decreasing intracellular superoxide corrects defective ischemia-induced new vessel formation in diabetic mice. Journal of Biological Chemistry. 2008;283(16):10930-8. https://doi.org/10.1074/jbc.M707451200
- Roy S, Khanna S, Nallu K, Hunt T, Sen CK. Dermal wound healing is subject to redox control. Molecular Therapy. 2006;13(1):211-20. https://doi.org/10.1016/j.ymthe.2005.07.684
- Schafer M, Werner S. Oxidative stress in normal and impaired wound repair. Pharmacological Research. 2008;58(2):165-71. https://doi.org/10.1016/j.phrs.2008.06.004
- Liu M, Zhang L, Joo D, Sun SC. NF-κB signaling in inflammation. Signal Transduction and Targeted Therapy. 2017;2:e17023.
- Perkins ND, Gilmore TD. Good cop, bad cop: the different face of NF-κB. Cell Death and Differentiation. 2006;13(5):759-72. https://doi.org/10.1038/sj.cdd.4401838
- Gilmore TD. Introduction to NF-κB: players, pathways, perspectives. Oncogene. 2006;25(51):6680-4. https://doi.org/10.1038/sj.onc.1209954
- Hayden MS, Ghosh S. Signaling to NF-κB. Genes & Development. 2004;18(18):2195-224. https://doi.org/10.1101/gad.1228704
- Chen C. Cox-2's new role in inflammation. Nature Chemical Biology. 2010;6(6):401-2. https://doi.org/10.1038/nchembio.375
- Futagami A, Ishizaki M, Fukuda Y, Kawana S, Yamanaka N. Wound healing involves induction of cyclooxygenase-2 expression in rat skin. Laboratory Investigation. 2002;82(11):1503-13. https://doi.org/10.1097/01.LAB.0000035024.75914.39
- Witte MB, Barbul A. Role of nitric oxide in wound repair. The American Journal of Surgery. 2002;183(4):406-12. https://doi.org/10.1016/S0002-9610(02)00815-2
- Shi HP, Most D, Efron DT, Tantry U, Fischel MH, Barbul A. The role of iNOS in wound healing. Surgery. 2001;130(2):225-9. https://doi.org/10.1067/msy.2001.115837
- Masae R, Kazuyoshi K, Emi K, Hiromasa T, Keiko I, Yoshimichi I, Ryoko M, Masahiro T. Critical role of tumor necrosis factor-a in the early process of wound healing in skin. Journal of Dermatology & Dermatologic Surgery. 2017;21(1):14-9. https://doi.org/10.1016/j.jdds.2016.09.001
- Stephan B, Olivera S, Michael GS, Harold B, Marjana CT. Growth factors and cytokines in wound healing. Wound Repair and Regeneration. 2008;16(5):585-601. https://doi.org/10.1111/j.1524-475X.2008.00410.x
- Blair ZJ, Andrew WS, Cecilia MP, Mark WF, Fiona MW. The role of IL-6 in skin fibrosis and cutaneous wound healing. Biomedicines. 2020;8(5):101-19. https://doi.org/10.3390/biomedicines8050101
- Delavary BM, Veer WM, Egmond M, Niessen FB, Beelen RHJ. Macrophages in skin injury and repair. Immunobiology. 2011;216(7):753-62. https://doi.org/10.1016/j.imbio.2011.01.001
- Mosser DM, Edwards JP. Exploring the full spectrum of macrophage activation. Nature Reviews Immunology. 2008;8(12):958-69. https://doi.org/10.1038/nri2448
- King A, Balagi S, Le LD, Crombleholme TM, Keswani SG. Regenerative wound healing: The role of interleukin-10. Advances in Wound Care. 2014;3(4):315-23. https://doi.org/10.1089/wound.2013.0461
- Moore KW, Malefyt RW, Coffman RL, O'Garra A. Interleukin-10 and the interleukin-10 receptor. Annual Review of Immunology. 2001;19(1):683-765. https://doi.org/10.1146/annurev.immunol.19.1.683
- Gordon S. Alternative activation of macrophages. Nature Reviews Immunology. 2003;3(1):23-35. https://doi.org/10.1038/nri978
- Shi J, Barakat M, Chen D, Chen L. Bicellular tight junctions and wound healing. International Journal of Molecular Sciences. 2018;19(12):3862. https://doi.org/10.3390/ijms19123862
- Farkas AE, Capaldo CT, Nusrat A. Regulation of epithelial proliferation by tight junction proteins. Annals of the New York Academy of Sciences. 2012;1258(1):115-24. https://doi.org/10.1111/j.1749-6632.2012.06556.x
- Leonardo TR, Shi J, Chen D, Trivedi HM, Chen L. Differential expression and function of bicellular tight junctions in skin and oral wound healing. International Journal of Molecular Sciences. 2020;21(8):2966. https://doi.org/10.3390/ijms21082966
- Volksdorf T, Heilmann J, Eming SA, Schawjinski K, Zorn-Kruppa M, Ueck C, Vidal-y-Sy S, Windhorst S, Jucker M, Moll I, Brandner JM. Tight junction proteins claudin-1 and occludin are important for cutaneous wound healing. The American Journal of Pathology. 2017;187(6):1301-12. https://doi.org/10.1016/j.ajpath.2017.02.006
- De Benedetto A, Rafaels NM, McGirt LY, Ivanov AI, Georas SN, Cheadle C, Berger AE, Zhang K, Vidyasagar S, Yoshida T, Boguniewicz M, Hata T, Schneider LC, Hanifin JM, Gallo RL, Novak N, Weidinger S, Beaty TH, Leung DY, Barnes KC, Beck LA. Tight junction defects in patients with atopic dermatitis. Journal of Allergy and Clinical Immunology. 2010;127(3):773-86. https://doi.org/10.1016/j.jaci.2010.10.018
- Usui ML, Mansbridge JN, Carter WG, Fujita M, Olerud JE. Keratinocyte migration, proliferation, and differentiation in chronic ulcers from patients with diabetes and normal wounds. Journal of Histochemistry & Cytochemistry. 2008;56(7):687-96. https://doi.org/10.1369/jhc.2008.951194