DOI QR코드

DOI QR Code

Effects of Oral Administered Hot Water Extracts of Korean Black Ginseng on Wound Healing in Mice

피부(皮膚) 창상(創傷) 동물모델에서 흑삼(黑蔘) 열수 추출물 경구 투여의 효과

  • Kim, Tae-Ryeong (Department of Korean Medicine Rehabilitation, College of Korean Medicine, Daegu Haany University) ;
  • Kim, Young-Jun (Department of Korean Medicine Rehabilitation, College of Korean Medicine, Daegu Haany University) ;
  • Woo, Chang-Hoon (Department of Korean Medicine Rehabilitation, College of Korean Medicine, Daegu Haany University)
  • 김태령 (대구한의대학교 한의과대학 한방재활의학교실) ;
  • 김영준 (대구한의대학교 한의과대학 한방재활의학교실) ;
  • 우창훈 (대구한의대학교 한의과대학 한방재활의학교실)
  • Received : 2021.12.15
  • Accepted : 2021.12.23
  • Published : 2022.01.31

Abstract

Objectives This study aims to evaluate the wound healing effects of oral administered hot water extracts of Korean black ginseng (KBG). Methods 40 C57BL/6 mice were divided into five groups; normal, control, vitamin E 200 mg/kg, KBG 100 mg/kg, KBG 200 mg/kg, each n=8. Skin wounds were made in the back of all mice except normal group using biopsy punches. Wounds were observed on days 7 and 14 after injury. The anti-oxidant and inflammatory protein levels were evaluated using western blotting. Skin tissue was analyzed by hematoxylin & eosin and Masson's trichrome staining method. Results KBG significantly accelerated reducing wound area. KBG significantly decreased myeloperoxidase activity. KBG significantly decreased oxidative stress factors such as NADPH oxidase-4 and p22phox and increased antioxidant enzymes including nuclear factor erythroid 2-related factor2, kelch-like ECH-associated protein-1, heme oxygenase-1, superoxide dismutase, catalase and glutathione peroxidase-1/2. Moreover, KBG significantly decreased inflammation factors including nuclear factor-κB, phosphorylated inhibitor of κBα, cyclooxygenase-2, inducible nitric oxide synthase, tumor necrosis factor-α and interleukin (IL)-6 and increased anti-inflammation cytokine such as IL-4 and IL-10. In addition, KBG significantly increased tight junction proteins including claudin-1, claudin-3, claudin-4. In histopathologic, KBG made the epithelium thin and uniform, and accelerated the remodeling of collagen. Conclusions The results suggest that KBG has healing effects on skin wound in mice by anti-inflammatory and antioxidant activity.

Keywords

References

  1. Simpson CL, Patel DM, Green KJ. Deconstructing the skin: cytoarchitectural determinants of epidermal morphogenesis. Nature Reviews of Molecular Cell Biology. 2011;12(9):565-80. https://doi.org/10.1038/nrm3175
  2. Barrientos S, Stojadinovic O, Golinko MS, Brem H, Tomic-Canic M. Growth factors and cytokines in wound healing. Wound Repair and Regeneration. 2008;16(5):585-601. https://doi.org/10.1111/j.1524-475X.2008.00410.x
  3. Reinke JM, Sorg H. Wound repair and regeneration. European Surgical Research. 2012;49(1):35-43. https://doi.org/10.1159/000339613
  4. Han ST, Whang WK, Kim IH, Yang BW, Cho SH, Ko SK. Analysis of ginsenosides of black ginseng. Archives of Pharmacal Research. 2005;49(6):490-4.
  5. Kim SN, Kang SJ. Effects of black ginseng (9 times steaming ginseng) on hypoglycemic action and changes in the composition of ginsenosides on the steaming process. Korean Journal of Food Science and Technology. 2009;41(1):77-81.
  6. Nam KY, Lee NR, Moon BD, Song GY, Shin HS, Choi JE. Changes of ginsenosides and color from black ginsengs prepared by steaming-drying cycles. Korean Journal of Medicinal Crop Science. 2012;20(1):27-35. https://doi.org/10.7783/KJMCS.2012.20.1.027
  7. Kim HJ, Lee JY, You BR, Kim HR, Choi JE, Nam KY, Moon BD, Kim MR. Antioxidant activities of ethanol extracts from black ginseng prepared by steaming-drying cycles. Journal of the Korean Society of Food Science and Nutrition. 2011;40(2):156-62. https://doi.org/10.3746/JKFN.2011.40.2.156
  8. Kim MY, Kwon OJ, Noh JS, Roh SS. Inhibitory activities of water extracts of black ginseng on HCL/ethanol-induced acute gastritis through anti-oxidant effect. Journal of the Korean Society of Food Science and Nutrition. 2016;45(9):1249-56. https://doi.org/10.3746/JKFN.2016.45.9.1249
  9. Metwaly AM, Lianlian Z, Luqi H, Dequiang D. Black ginseng and its saponins: preparation, phytochemistry and pharmacological effects. Molecules. 2019;24(10):1856. https://doi.org/10.3390/molecules24101856
  10. Go YJ, Kim YE, Kim HN, Lee EH, Cho EB, Sultanov A, Kwon SI, Cho YJ. Inhibition effect against elastase, collagenase, hyaluronidase and anti-oxidant activity of thinning green ball apple. Journal of Applied Biological Chemistry. 2020;63(1):43-50. https://doi.org/10.3839/jabc.2020.006
  11. Lister CE, Lancaster JE, Sutton KH, Walker JR. Developmental changes in the concentration and composition of flavonoids in skin of a red and a green apple cultivar. Journal of the Science of Food and Agriculture. 1994;64(2):155-61. https://doi.org/10.1002/jsfa.2740640204
  12. Blosis MS. Antioxidant determinations by the use of a stable free radical. Nature. 1958;181:1199-200. https://doi.org/10.1038/1811199a0
  13. Re R, Pellegrini N, Proteggente A, Pannala A, Yang M, Rice-evans C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radical Biology & Medicine. 1999;26:1231-7. https://doi.org/10.1016/S0891-5849(98)00315-3
  14. Geoffrey CG, Werner S, Barrandon Y, Longaker TM. Wound repair and regeneration. Nature. 2008;453(7193):314-21. https://doi.org/10.1038/nature07039
  15. Li D, Wang A, Liu X, Meisgen F, Grunler J, Botusan IR, Narayanan S, Erikci E, Li X, Blomqvist L, Du L, Pivarcsi A, Sonkoly E, Chowdhury K, Catrina SB, Stahle M, Landen NX. MicroRNA-132 enhances transition from inflammation to proliferation during wound healing. The Journal of Clinical Investigation. 2015;125(8):3008-26. https://doi.org/10.1172/JCI79052
  16. Andre-Levigne D, Modarressi A, Pepper MS, Pittet-Cuenod B. Reactive oxygen species and NOX enzymes are emerging as key players in cutaneous wound repair. International Journal of Molecular Sciences. 2017;18(10):2149. https://doi.org/10.3390/ijms18102149
  17. Keller U, Kumin A, Braun S, Werner S. Reactive oxygen species and their detoxification in healing skin wounds. Journal of Investigative Dermatology Symposium Proceedings. 2006;11(1):106-11. https://doi.org/10.1038/sj.jidsymp.5650001
  18. The Korean Medicine Society for Herbology. Herbology. Seoul:Yeongrim. 2007:572-4.
  19. Dzialo M, Mierziak J, Korzun U, Preisner M, Szopa J, Kulma A. The potential of plant phenolics in prevention and therapy of skin disorders. International Journal of Molecular Sciences. 2016;17(2):160. https://doi.org/10.3390/ijms17020160
  20. Ren W, Qiao Z, Wang H, Zhu L, Zhang L. Flavonoids: promising anticancer agents. Medicinal Research Reviews. 2003;23(4):519-34. https://doi.org/10.1002/med.10033
  21. Shah A, Amini-Nik S. The role of phytochemicals in the inflammatory phase of wound healing. International Journal of Molecular Sciences. 2017;18(5):1068. https://doi.org/10.3390/ijms18051068
  22. Kedare SB, Singh RP. Genesis and development of DPPH method of antioxidant assay. Journal of Food Science and Technology. 2011;48(4):412-22. https://doi.org/10.1007/s13197-011-0251-1
  23. Loria V, Dato I, Graziani F, Biasucci LM. Myeloperoxidase: a new biomarker of inflammation in ischemic heart disease and acute coronary syndromes. Mediators of Inflammation. 2008;2008:135625. https://doi.org/10.1155/2008/135625
  24. Eming SA, Krieg T, Davidson JM. Inflammation in wound repair: molecular and cellular mechanisms. Journal of Investigative Dermatology. 2007;127(3):514-25. https://doi.org/10.1038/sj.jid.5700701
  25. Hampton MB, Kettle AJ, Winterbourn CC. Inside th neutrophil phagosome: oxidants, myeloperoxidase, and bacterial killing. Blood. 1998;92(9):3007-17. https://doi.org/10.1182/blood.v92.9.3007.421k47_3007_3017
  26. Utami ND, Nordin A, Katas H, Idrus RBH, Fauzi MB. Molecular action of hydroxytyrosol in wound healing: an in vitro evidence-based review. Biomolecules. 2020;10(10):1397. https://doi.org/10.3390/biom10101397
  27. Espinosa-Diez C, Miguel V, Mennerich D, Kietzmann T, Sanchez-Perez P, Cadenas S, Lamas S. Antioxidant responses and cellular adjustments to oxidative stress. Redox Biology. 2015;6:183-97. https://doi.org/10.1016/j.redox.2015.07.008
  28. Panday A, Sahoo MK, Osorio D, Batra S. NADPH oxidases: an overview from structure to innate immunityassociated pathologies. Cellular & Molecular Immunology. 2015;12(1):5-23. https://doi.org/10.1038/cmi.2014.89
  29. Mittal M, Roth M, Konig P, Hofmann S, Dony E, Goyal P, Selbitz AC, Schermuly RT, Ghofrani HA, Kwapiszewska G, Kummer W, Klepetko W, Hoda MAR, Fink L, Hanze J, Seeger W, Grimminger F, Schmidt HHHW, Weissmann N. Hypoxia-dependent regulation of nonphagocytic NADPH oxidase subunit NOX4 in the pulmonary vasculature. Circulation Research. 2007;101(3):258-67. https://doi.org/10.1161/CIRCRESAHA.107.148015
  30. Peshavariya HM, Chan EC, Liu GS, Jiang F, Dusting GJ. Transforming growth factor-β1 requires NADPH oxidase 4 for angiogenesis in vitro and in vivo. Journal of Cellular and Molecular Medicine. 2014;18(6):1172-83. https://doi.org/10.1111/jcmm.12263
  31. Levigne D, Modarressi A, Krause KH, Pittet-Cuenod B. NADPH oxidase 4 deficiency leads to impaired wound repair and reduced dityrosine-crosslinking, but does not affect myofibroblast formation. Free Radical Biology & Medicine. 2016;96:374-84. https://doi.org/10.1016/j.freeradbiomed.2016.04.194
  32. Hiebert P, Werner S. Regulation of wound healing by the NRF2 transcription factor-more than cytoprotection. International Journal of Molecular Sciences. 2019;20(16):3856. https://doi.org/10.3390/ijms20163856
  33. Victor P, Sarada D, Ramkumar KM. Pharmacological activation of Nrf2 promotes wound healing. European Journal of Pharmacology. 2020;886:173395. https://doi.org/10.1016/j.ejphar.2020.173395
  34. Rabbani PS, Soares MA, Hameedi SG, Kadle RL, Mubasher A, Kowzun M, Ceradini DJ. Dysregulation of Nrf2/Keap1 redox pathway in diabetes affects multipotency of stromal cells. Diabetes. 2019;68(1):141-55. https://doi.org/10.2337/db18-0232
  35. Landen NX, Li D, Stahle M. Transition from inflammation to proliferation: a critical step during wound healing. Cellular and Molecular Life Sciences. 2016;73(20):3861-85. https://doi.org/10.1007/s00018-016-2268-0
  36. Abdalla HB, Napimoga MH, Lopes AH, Maganin AGM, Cunha TM, Dyke TEV, Napimoga JTCN. Activation of PPAR-γ induces macrophage polarization and reduces neutrophil migration mediated by heme oxygenase 1. International Immunopharmacology. 2020;84:106565. https://doi.org/10.1016/j.intimp.2020.106565
  37. Deshane J, Chen S, Caballero S, Grochot-Przeczek A, Was H, Calzi SL, Lach R, Hock TD, Chen B, Hill-Kapturczak N, Siegal GP, Dulak J, Jozkowicz A, Grant MB, Agarwal A. Stromal cell-derived factor 1 promotes angiogenesis via a heme oxygenase 1-dependent mechanism. Journal of Experimental Medicine. 2007;204(3):605-18. https://doi.org/10.1084/jem.20061609
  38. Fridovich I. Superoxide radical and superoxide dismutases. Annual Review of Biochemistry. 1995;64(1):97-112. https://doi.org/10.1146/annurev.bi.64.070195.000525
  39. Ceradini DJ, Yao D, Grogan RH, Callaghan MJ, Edelstein D, Brownlee M, Gurtner GC. Decreasing intracellular superoxide corrects defective ischemia-induced new vessel formation in diabetic mice. Journal of Biological Chemistry. 2008;283(16):10930-8. https://doi.org/10.1074/jbc.M707451200
  40. Roy S, Khanna S, Nallu K, Hunt T, Sen CK. Dermal wound healing is subject to redox control. Molecular Therapy. 2006;13(1):211-20. https://doi.org/10.1016/j.ymthe.2005.07.684
  41. Schafer M, Werner S. Oxidative stress in normal and impaired wound repair. Pharmacological Research. 2008;58(2):165-71. https://doi.org/10.1016/j.phrs.2008.06.004
  42. Liu M, Zhang L, Joo D, Sun SC. NF-κB signaling in inflammation. Signal Transduction and Targeted Therapy. 2017;2:e17023.
  43. Perkins ND, Gilmore TD. Good cop, bad cop: the different face of NF-κB. Cell Death and Differentiation. 2006;13(5):759-72. https://doi.org/10.1038/sj.cdd.4401838
  44. Gilmore TD. Introduction to NF-κB: players, pathways, perspectives. Oncogene. 2006;25(51):6680-4. https://doi.org/10.1038/sj.onc.1209954
  45. Hayden MS, Ghosh S. Signaling to NF-κB. Genes & Development. 2004;18(18):2195-224. https://doi.org/10.1101/gad.1228704
  46. Chen C. Cox-2's new role in inflammation. Nature Chemical Biology. 2010;6(6):401-2. https://doi.org/10.1038/nchembio.375
  47. Futagami A, Ishizaki M, Fukuda Y, Kawana S, Yamanaka N. Wound healing involves induction of cyclooxygenase-2 expression in rat skin. Laboratory Investigation. 2002;82(11):1503-13. https://doi.org/10.1097/01.LAB.0000035024.75914.39
  48. Witte MB, Barbul A. Role of nitric oxide in wound repair. The American Journal of Surgery. 2002;183(4):406-12. https://doi.org/10.1016/S0002-9610(02)00815-2
  49. Shi HP, Most D, Efron DT, Tantry U, Fischel MH, Barbul A. The role of iNOS in wound healing. Surgery. 2001;130(2):225-9. https://doi.org/10.1067/msy.2001.115837
  50. Masae R, Kazuyoshi K, Emi K, Hiromasa T, Keiko I, Yoshimichi I, Ryoko M, Masahiro T. Critical role of tumor necrosis factor-a in the early process of wound healing in skin. Journal of Dermatology & Dermatologic Surgery. 2017;21(1):14-9. https://doi.org/10.1016/j.jdds.2016.09.001
  51. Stephan B, Olivera S, Michael GS, Harold B, Marjana CT. Growth factors and cytokines in wound healing. Wound Repair and Regeneration. 2008;16(5):585-601. https://doi.org/10.1111/j.1524-475X.2008.00410.x
  52. Blair ZJ, Andrew WS, Cecilia MP, Mark WF, Fiona MW. The role of IL-6 in skin fibrosis and cutaneous wound healing. Biomedicines. 2020;8(5):101-19. https://doi.org/10.3390/biomedicines8050101
  53. Delavary BM, Veer WM, Egmond M, Niessen FB, Beelen RHJ. Macrophages in skin injury and repair. Immunobiology. 2011;216(7):753-62. https://doi.org/10.1016/j.imbio.2011.01.001
  54. Mosser DM, Edwards JP. Exploring the full spectrum of macrophage activation. Nature Reviews Immunology. 2008;8(12):958-69. https://doi.org/10.1038/nri2448
  55. King A, Balagi S, Le LD, Crombleholme TM, Keswani SG. Regenerative wound healing: The role of interleukin-10. Advances in Wound Care. 2014;3(4):315-23. https://doi.org/10.1089/wound.2013.0461
  56. Moore KW, Malefyt RW, Coffman RL, O'Garra A. Interleukin-10 and the interleukin-10 receptor. Annual Review of Immunology. 2001;19(1):683-765. https://doi.org/10.1146/annurev.immunol.19.1.683
  57. Gordon S. Alternative activation of macrophages. Nature Reviews Immunology. 2003;3(1):23-35. https://doi.org/10.1038/nri978
  58. Shi J, Barakat M, Chen D, Chen L. Bicellular tight junctions and wound healing. International Journal of Molecular Sciences. 2018;19(12):3862. https://doi.org/10.3390/ijms19123862
  59. Farkas AE, Capaldo CT, Nusrat A. Regulation of epithelial proliferation by tight junction proteins. Annals of the New York Academy of Sciences. 2012;1258(1):115-24. https://doi.org/10.1111/j.1749-6632.2012.06556.x
  60. Leonardo TR, Shi J, Chen D, Trivedi HM, Chen L. Differential expression and function of bicellular tight junctions in skin and oral wound healing. International Journal of Molecular Sciences. 2020;21(8):2966. https://doi.org/10.3390/ijms21082966
  61. Volksdorf T, Heilmann J, Eming SA, Schawjinski K, Zorn-Kruppa M, Ueck C, Vidal-y-Sy S, Windhorst S, Jucker M, Moll I, Brandner JM. Tight junction proteins claudin-1 and occludin are important for cutaneous wound healing. The American Journal of Pathology. 2017;187(6):1301-12. https://doi.org/10.1016/j.ajpath.2017.02.006
  62. De Benedetto A, Rafaels NM, McGirt LY, Ivanov AI, Georas SN, Cheadle C, Berger AE, Zhang K, Vidyasagar S, Yoshida T, Boguniewicz M, Hata T, Schneider LC, Hanifin JM, Gallo RL, Novak N, Weidinger S, Beaty TH, Leung DY, Barnes KC, Beck LA. Tight junction defects in patients with atopic dermatitis. Journal of Allergy and Clinical Immunology. 2010;127(3):773-86. https://doi.org/10.1016/j.jaci.2010.10.018
  63. Usui ML, Mansbridge JN, Carter WG, Fujita M, Olerud JE. Keratinocyte migration, proliferation, and differentiation in chronic ulcers from patients with diabetes and normal wounds. Journal of Histochemistry & Cytochemistry. 2008;56(7):687-96. https://doi.org/10.1369/jhc.2008.951194