DOI QR코드

DOI QR Code

결빙된 전기체 헬리콥터의 비행성 향상을 위한 강인 제어 설계

Robust Control Design for Handling Quality Improvement of Iced Full-scale Helicopter

  • Ju, Jong-In (Graduate School of Mechanical and Aerospace Engineering, Gyeongsang National University) ;
  • Kim, Yoonsoo (Graduate School of Mechanical and Aerospace Engineering, Gyeongsang National University)
  • 투고 : 2021.12.07
  • 심사 : 2022.01.18
  • 발행 : 2022.02.01

초록

악천후나 기계적 결함에 의한 비행성(Handling Qualities) 저하는 그 상황에 익숙하지 못한 조종사에게 치명적인 위험을 줄 수 있다. 특히 결빙의 경우에는 실제로 사고가 빈번하게 일어나는 원인인 만큼 중요하게 고려해야 할 사안이다. 대다수의 기존 연구들은 결빙에 따른 공기역학적 성능 변화와 그에 따른 모델링 방법을 제시하거나 결빙을 방지하는 방법을 주로 다루었으나, 본 연구에서는 전기체(full-scale) 헬리콥터에 발생하는 결빙으로 인한 비행 성능 저하를 능동적으로 보상하는 비행제어기를 설계하고자 한다. 본 연구에서는 먼저 UH-60 헬리콥터에 발생하는 결빙으로 인한 비행성 저하를 CONDUIT이라는 프로그램을 통해 보이고, 이러한 비행성 저하를 보상하기 위해 RS-LQR(Robust Servomechanism Linear Quadratic Regulation) 기법을 사용한 강인 제어기를 설계하였다. 시뮬레이션을 통해 제안한 강인 제어기가 헬리콥터가 결빙된 상황에서도 Level 1 비행성을 유지하는 것을 보였다.

Degradation of handling qualities(HQs) due to bad weather or mechanical failure can pose a fatal risk to pilots unfamiliar with such situation. In particular, icing is an important issue to consider as it is a frequent cause of accidents. Most of the previous research works focuses on aerodynamic performance changes due to icing and the corresponding icing modeling or methods to prevent icing, whereas the present work attempts to actively compensate for HQ degradation due to icing on a full-scale helicopter through flight control law design. To this end, the present work first demonstrates HQ degradation due to icing using CONDUIT software, and subsequently presents a robust control design via the RS-LQR(Robust Servomechanism Linear Quadratic Regulation) procedure to compensate for the HQ degradation. Simulation results show that the proposed robust control maintains Level 1 HQ in the presence of icing.

키워드

과제정보

본 논문은 정부(과학기술정보통신부)의 재원으로 한국연구재단의 지원을 받아 수행된 연구임(No. 2021R1A2C1004547, 2017R1A5A1015311).

참고문헌

  1. Prince, R. L., Lee, J. W. and Myong, R. S., "Ice accretion and aerodynamic effects on a multi-element airfoil under SLD icing conditions," Aerospace Science and Technology, Vol. 85, 2019, pp. 320~333. https://doi.org/10.1016/j.ast.2018.12.017
  2. Fikret, C. and Hajiyev, C., "A review of in-flight detection and identification of aircraft icing and reconfigurable control," Progress in Aerospace Sciences, Vol. 60, 2013, pp. 12~34. https://doi.org/10.1016/j.paerosci.2012.11.001
  3. Jing Che, D. D. and Qian, W. Q., "Fault-Tolerant Flight Control for Aircraft Wing Icing Based on Icing Detection Method," IEEE CSAA Guidance, Navigation and Control Conference (CGNCC), 2018, pp. 1~6.
  4. Cao, Y., Wu, Z., Su, Y. and Xu, Z., "Aircraft flight characteristics in icing conditions," Progress in Aerospace Sciences, Vol. 74, 2015, pp. 62~80. https://doi.org/10.1016/j.paerosci.2014.12.001
  5. Croce, G., De Candido, E., Habashi, W. G., Munzar, J., Aube, M. S., Baruzzi, G. S. and Aliaga, C., "FENSAP-ICE: Analytical model for spatial and temporal evolution of in-flight icing roughness," Journal of Aircraft, Vol. 47, No. 4, 2010, pp. 1283~1289. https://doi.org/10.2514/1.47143
  6. Lampton, A. and Valasek, J., "Prediction of icing effects on the lateral/directional stability and control of light airplanes," Aerospace Science and Technology, Vol. 23, No. 1, 2012, pp. 305~311. https://doi.org/10.1016/j.ast.2011.08.005
  7. Hao-Jun, Z. L. X. and Da-Wei, G. S. K. L., "Research of aircraft icing characteristics and anti-icing and de-icing technology," China Safety Science Journal, Vol. 6, No. 21, 2010.
  8. Reehorst, A., Addy, H. and Colantonio, R., "Examination of icing induced loss of control and its mitigations," AIAA Guidance, Navigation, and Control Conference, 2010.
  9. Harno, H. G. and Kim, Y. S., "Flight envelope estimation for helicopters under icing conditions via the zonotopic reachability analysis," Aerospace Science and Technology, Vol. 102, 2020.
  10. Sorensen, K. L., Helland, A. S. and Johansen, T. A., "Carbon nanomaterial-based wing temperature control system for in-flight anti-icing and de-icing of unmanned aerial vehicles," IEEE Aerospace Conference, 2015, pp. 1~6.
  11. Park, M. S., "Aircraft De-Icing System Using Thermal Conductive Fibers," PhD Dissertations and Master's Theses, Vol. 276, 2015.
  12. van Ekeren, W., Looye, G., Kuchar, R. O., Chu, Q. P. and Van Kampen, E. J., "Design, implementation and flight-tests of incremental nonlinear flight control methods," AIAA Guidance, Navigation, and Control Conference, 2018.
  13. Baskett, B. J., "Aeronautical design standard performance specification handling qualities requirements for military rotorcraft," Defense Technical Information Center Report, 2000.
  14. Colbourne, J. D., Biezad, D. J., Frost, C. R., Polytechnic, C., Tischler, M. B., Cheung, K. K. and Hiranaka, D. K., "Control law design and optimization for rotorcraft handling qualities criteria using CONDUIT," Annual Forum Proceedings-American Helicopter Society, Vol. 55, No. 1, 1999, pp. 1168~1188.
  15. Yoon, S., Kim, D., Seong, E., Park, T., Hwang, H., Ahn, J. and Lee, J., "Preliminary Evaluation of Handling Qualities of a SAR (Search & Rescue) Helicopter Simulator Based on ADS-33 Requirements," Journal of the Korean Society for Aeronautical & Space Sciences, Vol. 44, No. 9, 2016, pp. 796~805. https://doi.org/10.5139/JKSAS.2016.44.9.796
  16. Seo, G. H. and Kim, Y. S., "Development Status of Helicopter Simulator Technology," Journal of the Korean Society for Aeronautical & Space Sciences, Vol. 47, No. 2, 2019, pp. 446~459. https://doi.org/10.5139/JKSAS.2019.47.6.446
  17. Howlett, J. J., UH-60 Black Hawk Engineering Simulation Program, Vol, 1, Mathematical Model, NASA CR-166309, 1981.
  18. Ljung, L. and Singh, R., "Version 8 of the MATLAB system identification toolbox," IFAC Proceedings Volumes, Vol. 45, No. 16, 2012, pp. 1826~1831.
  19. Bultheel, A., Laurent series and their Pade approximations, Vol. 27, Birkhauser, 2012.
  20. Zhou, K., Salomon, G. and Wu, E., "Balanced realization and model reduction for unstable systems," International Journal of Robust and Nonlinear Control: IFAC Affiliated Journal, Vol. 9, No. 3, 1999, pp. 183~198. https://doi.org/10.1002/(SICI)1099-1239(199903)9:3<183::AID-RNC399>3.0.CO;2-E
  21. Ioannou, P. A. and Sun, J., Robust adaptive control, Courier Corporation, NewYork, 2012, pp. 43~66.
  22. Crary, J., Techniques of the Observer, Cambridge, MA, MIT press, 1990.