DOI QR코드

DOI QR Code

Microwave Assisted Synthesis of Graphene-Bi2MoO6 Nanocomposite as Sono-Photocatalyst

  • Tang, Jia-Yao (Key Laboratory for Advanced Technology in Environmental Protection of Jiangsu Province, Yancheng Institute of Technology) ;
  • Zhu, Lei (Key Laboratory for Advanced Technology in Environmental Protection of Jiangsu Province, Yancheng Institute of Technology) ;
  • Fan, Jia-Yi (Key Laboratory for Advanced Technology in Environmental Protection of Jiangsu Province, Yancheng Institute of Technology) ;
  • Sun, Chen (Key Laboratory for Advanced Technology in Environmental Protection of Jiangsu Province, Yancheng Institute of Technology) ;
  • Oh, Won-Chun (Department of Advanced Materials Science & Engineering, Hanseo University)
  • Received : 2021.09.28
  • Accepted : 2021.12.06
  • Published : 2022.01.27

Abstract

In this investigation, Bi2MoO6 deposited graphene nanocomposite (BMG) was synthesized using a simple microwave assisted hydrothermal synthesis method. The synthesized BMG nanocomposite was characterized by X-ray diffraction, transmission electron microscopy, scanning electron microscopy with energy dispersive X-ray analysis, and photocurrent analysis. The study revealed that the catalysts prepared have high crystalline nature, enhanced light responsive property, high catalytic activity, and good stability. XRD results of BMG composite exhibit a koechlinite phase of Bi2MoO6. The surface property is shown by SEM and TEM, which confirmed a homogenous composition in the bulk particles of Bi2MoO6 and nanosheets of graphene. The catalytic behavior was investigated by the decomposition of Rhodamine B as a standard dye. The results exhibit excellent yields of product derivatives at mild conditions under ultrasonic/visible light-medium. Approximately 1.6-times-enhanced sono-photocatalytic activity was observed by introduction of Bi2MoO6 on graphene nanosheet compared with control sample P25 during 50 min test.

Keywords

References

  1. X. Chen and S. S. Mao, Chem. Rev., 107, 2891 (2007). https://doi.org/10.1021/cr0500535
  2. C. Burda, Y. Lou, X. Chen, A. C. S. Samia, J. Stout and J. L. Gole, Nano Lett., 3, 1049 (2003). https://doi.org/10.1021/nl034332o
  3. O. K. Dalrymple, E. Stefanakos, M. A. Trotz and D. Y. Goswami, Appl. Catal., B, 98, 27 (2010). https://doi.org/10.1016/j.apcatb.2010.05.001
  4. Y. Shimodaira, H. Kato, H. Kobayashi and A. Kudo, J. Phys. Chem. B, 110, 17790 (2006). https://doi.org/10.1021/jp0622482
  5. J. Ricote, L. Pardo, A. Castro and P. Millan, J. Solid State Chem., 160, 54 (2001). https://doi.org/10.1006/jssc.2001.9188
  6. Y. Man, R. L. Zong and Y. F. Zhu, Acta Phys. Chim. Sin., 23, 1671 (2007). https://doi.org/10.1016/S1872-1508(07)60080-1
  7. X. Zhao, T. G. Xu, W. Q. Yao and Y. F. Zhu, Appl. Surf. Sci., 255, 8036 (2009). https://doi.org/10.1016/j.apsusc.2009.05.010
  8. O. Akhavan, ACS Nano, 4, 4174 (2010). https://doi.org/10.1021/nn1007429
  9. Y. P. Zhang and C. X. Pan, J. Mater. Sci., 46, 2622 (2011). https://doi.org/10.1007/s10853-010-5116-x
  10. J. Liu, H. Bai, Y. Wang, Z. Liu, X. Zhang and D. D. Sun, Adv. Funct. Mater., 20, 4175 (2010). https://doi.org/10.1002/adfm.201001391
  11. F. Zhou, R. Shi and Y. Zhu, J. Mol. Catal. A: Chem., 340, 77 (2011). https://doi.org/10.1016/j.molcata.2011.03.012
  12. J.-P. Zou, J. Ma, Q. Huang, S.-L. Luo, J. Yu, X.-B. Luo, W.-L. Dai, J. Sun, G.-C. Guo, C.-T. Au and S. L. Suib, Appl. Catal., B, 156-157, 447 (2014). https://doi.org/10.1016/j.apcatb.2014.03.038
  13. P. Wang, Y. Ao, C. Wang, J. Hou and J. Qian, Carbon, 50, 5256 (2012). https://doi.org/10.1016/j.carbon.2012.06.063
  14. Z.-D. Meng, L. Zhu, J.-G. Choi, C.-Y. Park and W.-C. Oh, Nanoscale. Res. Lett., 6 459 (2011). https://doi.org/10.1186/1556-276X-6-459
  15. J. Wang, W, Sun, Z. Zhang, Z. Xing, R. Xu, R. Li, Y. Li and X. Zhang, Ultrason. Sonochem., 15, 301 (2008). https://doi.org/10.1016/j.ultsonch.2007.07.001
  16. M. Kubo, K. Matsuoka, A. Takahashi, N. ShibasakiKitakawa and T. Yonemoto, Ultrason. Sonochem., 12, 263 (2005). https://doi.org/10.1016/j.ultsonch.2004.01.039
  17. T. J. Al-Musawi, P. Rajiv, N. Mengelizadeh, I. A. Mohammed and D. Balarak, J. Environ. Manage., 292, 112777 (2021). https://doi.org/10.1016/j.jenvman.2021.112777
  18. M. Khairy, E. M. Naguib and M. M. Mohamed, J. Photochem. Photobiol. Chem., 396, 112507 (2020). https://doi.org/10.1016/j.jphotochem.2020.112507
  19. A. Khataee, T. S. Rad, S. Nikzat, A. Hassani, M. H. Aslan, M. Kobya and E. Demirbas, Chem. Eng. J., 375, 122102 (2019). https://doi.org/10.1016/j.cej.2019.122102
  20. M. M. Mohamed, M. A. Ghanem, M. Khairy, E. Naguib and N. H. Alotaibi, Appl. Surf. Sci., 487, 539 (2019). https://doi.org/10.1016/j.apsusc.2019.05.135
  21. W. S. Hummers and R. E. Offeman, J. Am. Chem. Soc., 80, 1339 (1958). https://doi.org/10.1021/ja01539a017
  22. Y. Min, F.-J. Zhang, W. Zhao, F. Zheng, Y. Chen and Y. Zhang, Chem. Eng. J., 209, 215 (2012). https://doi.org/10.1016/j.cej.2012.07.109
  23. K. Gotoh, T. Kinumoto, E. Fujii, A. Yamamoto, H. Hashimoto, T. Ohkubo, A. Itadani, Y. Kuroda and H. Ishida, Carbon, 49, 1118 (2011). https://doi.org/10.1016/j.carbon.2010.11.017
  24. X.-Y. Zhang, H.-P. Li, X.-L. Cui and Y. Lin, J. Mater. Chem., 20, 2801 (2010). https://doi.org/10.1039/b917240h
  25. H. Zhang, X. Lv, Y. Li, Y. Wang and J. Li, ACS Nano, 4, 380 (2010). https://doi.org/10.1021/nn901221k
  26. A. B. Bourlinos, D. Gournis, D. Petridis, T. Szabo, A. Szeri and I. Dekany, Langmuir, 19, 6050 (2003). https://doi.org/10.1021/la026525h
  27. J. W. Lekse, A. M. Pischera and J. A. Aitken, Mater. Res. Bull., 42, 395 (2007). https://doi.org/10.1016/j.materresbull.2006.09.025
  28. M. Sun, Y. Yao, W. Ding and S. Anandan, J. Alloys Compd., 820, 153172 (2020). https://doi.org/10.1016/j.jallcom.2019.153172
  29. L. Ghalamchi and S. Aber, Mater. Chem. Phys., 256, 123649 (2020). https://doi.org/10.1016/j.matchemphys.2020.123649
  30. N. Shimizu, C. Ogino, M. D. Farshbaf and T. Murata, Ultrason. Sonochem., 14, 184 (2007). https://doi.org/10.1016/j.ultsonch.2006.04.002
  31. K. Zhang and W.-C. Oh, Bull. Korean Chem. Soc., 31, 1589 (2010). https://doi.org/10.5012/BKCS.2010.31.6.1589
  32. J. Saien, H. Delavari and A. R. Solymani, J. Hazard. Mater, 177, 1031 (2010). https://doi.org/10.1016/j.jhazmat.2010.01.024
  33. N. Wang, L. Zhu, M. Wang, D. Wang and H. Tang, Ultrason. Sonochem., 17, 78 (2010). https://doi.org/10.1016/j.ultsonch.2009.06.014
  34. X. Zhang, M. Zhou and L. Lei, Carbon, 43, 1700 (2005). https://doi.org/10.1016/j.carbon.2005.02.013