DOI QR코드

DOI QR Code

Agastache rugosa modulates productions of inflammatory mediators in RAW 264.7 stimulated by lipopolysaccharide

배초향이 RAW 264.7의 염증인자 생성에 미치는 영향

  • Park, Wansu (Department of Pathology, College of Korean Medicine, Gachon University)
  • 박완수 (가천대학교 한의과대학 병리학교실)
  • Received : 2021.12.13
  • Accepted : 2022.01.25
  • Published : 2022.01.30

Abstract

Objectives : The aim of this study was to investigate the effect of water extract of Agastache rugosa (AR) on productions of inflammatory mediators in lipopolysaccharide (LPS)-stimulated RAW 264.7 mouse macrophages. Methods : Cell viabilities were measured with MTT assay. The production of nitric oxide (NO) from RAW 264.7 cells was measured with Griess reagent assay. The production of cytokines in RAW 264.7 cells was measured with multiplex cytokine assay. Results : AR showed no cytotoxicity on RAW 264.7 cells. AR at concentrations of 25, 50, 100, and 200 ㎍/mL significantly inhibited NO production in LPS-stimulated RAW 264.7 cells. AR at concentrations of 50, 100, and 200 ㎍/mL significantly inhibited productions of TNF-α and IL-1β in LPS-stimulated RAW 264.7 cells; AR at concentrations of 50 and 200 ㎍/mL significantly inhibited productions of RANTES (CCL5) in LPS-stimulated RAW 264.7 cells; AR at concentrations of 100 ㎍/mL significantly inhibited productions of macrophage inflammatory protein-1β in LPS-stimulated RAW 264.7 cells; AR at concentrations of 50, 100, and 200 ㎍/mL significantly increased productions of IP-10 (CXCL10) in LPS-stimulated RAW 264.7 cells; AR at concentrations of 100 and 200 ㎍/mL significantly increased MCP-1 (CCL-2) in LPS-stimulated RAW 264.7 cells; AR at concentrations of 50 and 100 ㎍/mL significantly increased productions of IL-10 in LPS-stimulated RAW 264.7 cells. Conclusions : AR might have immunomodulatory effects on productions of NO, cytokines, and chemokines in LPS-stimulated RAW 264.7 mouse macrophages.

Keywords

Acknowledgement

본 연구는 한국연구재단(No. 2017R1A2B4004933)의 지원에 의해 수행되었습니다.

References

  1. Textbook Compilation Committee of National University of Korean Medicine. Herbology. Seoul : Younglimsa. 1991 : 292-4.
  2. Yoon SB, Lee YJ, Park SK, Kim HC, Bae H, Kim HM, Ko SG, Choi HY, Oh MS, Park W. Anti-inflammatory effects of Scutellaria baicalensis water extract on LPS-activated RAW 264.7 macrophages. J. Ethnopharmacol. 2009 ; 125(2) : 286-90. https://doi.org/10.1016/j.jep.2009.06.027
  3. Park WS. Effect of Water Extract from Artemisiae Argi Folium on Mouse Macrophage Stimulated by LPS. Kor. J. Herbology. 2009 ; 24(1) : 151-7.
  4. Lee JY, Lee YJ, Park WS. Anti-inflammatory Effects of Fermented Houttuyniae Herba Water Extract on LPS-induced Mouse Macrophage. Kor. J. Herbology. 2010 ; 25(3) : 27-34. https://doi.org/10.6116/KJH.2010.25.3.027
  5. Nam HH, Kim JS, Lee J, Seo YH, Kim HS, Ryu SM, Choi G, Moon BC, Lee AY. Pharmacological Effects of Agastache rugosa against Gastritis Using a Network Pharmacology Approach. Biomolecules. 2020 ; 10(9) : 1298. https://doi.org/10.3390/biom10091298
  6. Davies LC, Taylor PR. Tissue-resident macrophages: then and now. Immunology. 2015 ; 144(4) : 541-8. https://doi.org/10.1111/imm.12451
  7. Fei QL, Zhang XY, Qi RJ, Huang YF, Han YX, Li XM, Cai RL, Gao Y, Qi Y. Canscora lucidissima, a Chinese folk medicine, exerts anti-inflammatory activities by inhibiting the phosphorylation of ERK1/2 in LPS-activated macrophages. Bmc Complement. Altern. Med. 2019 ; 19(1) : 371. https://doi.org/10.1186/s12906-019-2783-2
  8. Kim DH, Lee JY, Kim YJ, Kim HJ, Park W. Rubi Fructus Water Extract Alleviates LPS-Stimulated Macrophage Activation via an ER Stress-Induced Calcium/CHOP Signaling Pathway. Nutrients. 2020 ; 12(11) : 3577. https://doi.org/10.3390/nu12113577
  9. Park WS. Study on Biological Effect of Multi-Herbal Drug KOCO-P1 on Human Hepatocytes (HepG2). Kor. J. Herbology. 2008 ; 23(3) : 149-54.
  10. Cao P, Xie P, Wang X, Wang J, Wei J, Kang WY. Chemical constituents and coagulation activity of Agastache rugosa. Bmc. Complement. Altern. Med. 2017 ; 17(1) : 93. https://doi.org/10.1186/s12906-017-1592-8
  11. Lee Y, Lim HW, Ryu IW, Huang YH, Park M, Chi YM, Lim CJ. Anti-Inflammatory, Barrier-Protective, and Antiwrinkle Properties of Agastache rugosa Kuntze in Human Epidermal Keratinocytes. Biomed. Res. Int. 2020 ; 2020 : 1759067.
  12. Moon H, Kim MJ, Son HJ, Kweon HJ, Kim JT, Kim Y, Shim J, Suh BC, Rhyu MR. Five hTRPA1 Agonists Found in Indigenous Korean Mint, Agastache rugosa. Plos. One. 2015 ; 10(5) : e0127060. https://doi.org/10.1371/journal.pone.0127060
  13. Shin S, Kang CA. Antifungal activity of the essential oil of Agastache rugosa Kuntze and its synergism with ketoconazole. Lett. Appl. Microbiol. 2003 ; 36(2) : 111-5. https://doi.org/10.1046/j.1472-765X.2003.01271.x
  14. Haiyan G, Lijuan H, Shaoyu L, Chen Z, Ashraf MA. Antimicrobial, antibiofilm and antitumor activities of essential oil of Agastache rugosa from Xinjiang, China. Saudi. J. Biol. Sci. 2016 ; 23(4) : 524-30. https://doi.org/10.1016/j.sjbs.2016.02.020
  15. Hong JJ, Choi JH, Oh SR, Lee HK, Park JH, Lee KY, Kim JJ, Jeong TS, Oh GT. Inhibition of cytokine-induced vascular cell adhesion molecule-1 expression; possible mechanism for anti-atherogenic effect of Agastache rugosa. Febs. Lett. 2001 ; 495(3) : 142-7. https://doi.org/10.1016/S0014-5793(01)02379-1
  16. Torretta S, Scagliola A, Ricci L, Mainini F, Di Marco S, Cuccovillo I, Kajaste-Rudnitski A, Sumpton D, Ryan KM, Cardaci S. D-mannose suppresses macrophage IL-1β production. Nat. Commun. 2020 ; 11(1) : 6343. https://doi.org/10.1038/s41467-020-20164-6
  17. Pacher P, Beckman JS, Liaudet L. Nitric oxide and peroxynitrite in health and disease. Physiol. Rev. 2007 ; 87(1) : 315-424. https://doi.org/10.1152/physrev.00029.2006
  18. Tsopka IC, Hadjipavlou-Litina D. Hybrids as NO Donors. Int. J. Mol. Sci. 2021 ; 22(18) : 9788. https://doi.org/10.3390/ijms22189788
  19. Wizemann TM, Gardner CR, Laskin JD, Quinones S, Durham SK, Goller NL, Ohnishi ST, Laskin DL. Production of nitric oxide and peroxynitrite in the lung during acute endotoxemia. J. Leukoc. Biol. 1994 ; 56(6) : 759-68. https://doi.org/10.1002/jlb.56.6.759
  20. Sethi JK, Hotamisligil GS. Metabolic Messengers: tumour necrosis factor. Nat. Metab. 2021 ; 3(10) : 1302-12. https://doi.org/10.1038/s42255-021-00470-z
  21. Pathak S, Stern C, Vambutas A. N-Acetylcysteine attenuates tumor necrosis factor alpha levels in autoimmune inner ear disease patients. Immunol. Res. 2015 ; 63(1-3) : 236-45. https://doi.org/10.1007/s12026-015-8696-3
  22. Lin CC, Edelson BT. New Insights into the Role of IL-1β in Experimental Autoimmune Encephalomyelitis and Multiple Sclerosis. J. Immunol. 2017 ; 198(12) : 4553-60. https://doi.org/10.4049/jimmunol.1700263
  23. Pfander P, Eiers AK, Burret U, Vettorazzi S. Deletion of Cdk5 in Macrophages Ameliorates Anti-Inflammatory Response during Endotoxemia through Induction of C-Maf and Il-10. Int. J. Mol. Sci. 2021 ; 22(17) : 9648. https://doi.org/10.3390/ijms22179648
  24. Mosser DM, Zhang X. Interleukin-10: new perspectives on an old cytokine. Immunol. Rev. 2008 ; 226 : 205-18. https://doi.org/10.1111/j.1600-065X.2008.00706.x
  25. Angiolillo AL, Sgadari C, Taub DD, Liao F, Farber JM, Maheshwari S, Kleinman HK, Reaman GH, Tosato G. Human interferon-inducible protein 10 is a potent inhibitor of angiogenesis in vivo. J. Exp. Med. 1995 ; 182(1) : 155-62. https://doi.org/10.1084/jem.182.1.155
  26. Deshmane SL, Kremlev S, Amini S, Sawaya BE. Monocyte chemoattractant protein-1 (MCP-1): an overview. J. Interferon. Cytokine. Res. 2009 ; 29(6) : 313-26. https://doi.org/10.1089/jir.2008.0027
  27. Takada Y, Hisamatsu T, Kamada N, Kitazume MT, Honda H, Oshima Y, Saito R, Takayama T, Kobayashi T, Chinen H, Mikami Y, Kanai T, Okamoto S, Hibi T. Monocyte chemoattractant protein-1 contributes to gut homeostasis and intestinal inflammation by composition of IL-10-producing regulatory macrophage subset. J. Immunol. 2010 ; 184(5) :2671-6. https://doi.org/10.4049/jimmunol.0804012
  28. Dorner BG, Scheffold A, Rolph MS, Huser MB, Kaufmann SH, Radbruch A, Flesch IE, Kroczek RA. MIP-1alpha, MIP-1beta, RANTES, and ATAC/lymphotactin function together with IFN-gamma as type 1 cytokines. Proc. Natl. Acad. Sci. U S A. 2002 ; 99(9) : 6181-6. https://doi.org/10.1073/pnas.092141999