DOI QR코드

DOI QR Code

Experimental Study on the Spray Characteristics of Low Pressure Fog Nozzles in Cooling Fog System

쿨링 포그 시스템의 저압 안개 노즐 분무특성에 대한 실험적 연구

  • 김지엽 (경북대학교 기계공학과) ;
  • 정철 (경북대학교 기계공학과) ;
  • 강원중 (경북대학교 기계공학과) ;
  • 김정웅 (경북대학교 기계공학과) ;
  • 홍정구 (경북대학교 기계공학과)
  • Received : 2022.09.21
  • Accepted : 2022.11.08
  • Published : 2022.12.31

Abstract

Cooling fog is being used in various parts of society such as fine dust reduction, cleanliness, and temperature drop. Cooling fog has the advantage of low flow rate and ease of use compared to other spray systems. In the case of cooling fog, it was confirmed that the injection angle increased as the pressure increased and the nozzle diameter increased. In this study, the minimum injection angle was 33.61 degrees and the maximum injection angle was 107.38 degrees. It was confirmed that the larger the nozzle diameter and the smaller the pressure, the larger the droplet size. In addition, it was confirmed that the Sauter Mean Diameter (SMD) increased along the X and Y axis directions. It was confirmed that the size of the droplet decreases as it approaches the nozzle tip due to the characteristics of the nozzle design factor.

Keywords

Acknowledgement

본 연구는 산업통상자원부의 재원으로 한국에너지기술평가원(KETEP)의 지원을 받아 수행한 연구과제입니다. (No.20204010600060), 또한, (주) 필터테크의 재원을 지원받아 수행한 연구과제입니다.

References

  1. F. Sultan, N. Ashgriz, D. R. Guildenbecher and P. E. Sojka, "Handbook of Atomization and Sprays", Springer, 2011.
  2. H. Lefebvre and V. G. McDonell, "Atomization and Sprays, 2nd ed", CRC Press: Boca Raton, 2017.
  3. S. Y. Lee, Atomization and Spray, Minumsa, 1996.
  4. S. H. Shah, K. R. Pai, S. R. Shinde and B. N. Thorat, "Analysis of a Vapor Compression Refrigeration System using a Fog-Cooled Condenser", Applied Thermal Engineering, Vol. 196, 2021, 117229.
  5. R. Ghosh, T. K. Ray and R. Ganguly, "Cooling Tower Fog harvesting in power plant-A pilot study", Energy, Vol. 89, 2015, pp. 1018~1028. https://doi.org/10.1016/j.energy.2015.06.050
  6. C. Guo, W. Nie, C. Xu, H. Peng, C. Zhang, S. Li, N. Yue, Z. Liu, S. Yang, Q. Ma and M. Li, "A Study of the Spray Atomization and Suppression of Tunnel Dust Pollution based on a CFD-based Simulation", Journal of Cleaner Production, Vol. 276, 2020, 123632. https://doi.org/10.1016/j.jclepro.2020.123632
  7. J. Sanchez-Hermosilla, F. Paez, V. J. Rincon and A. J. Callejon, "Evaluation of a Fog Cooling System for applying Plant-Protection Products in a Greenhouse Tomato Crops", Crop Protection, Vol. 48, 2013, pp. 76~81. https://doi.org/10.1016/j.cropro.2013.02.018
  8. K. Rajmund, "Advantages of Water Fog Use as a Fire Extinguisher", Academic and Applied Research in Military and Public Management Science, Vol. 14, No. 2, 2015, pp. 259~264.
  9. P. E. Santangelo, "Characterization of high- pressure water-mist sprays: Experimental analysis of droplet size and dispersion", Experimental Thermal and Fluid Science, Vol. 34, No. 8, 2010, pp. 1353~1366. https://doi.org/10.1016/j.expthermflusci.2010.06.008
  10. Z. Wang, W. Wang and Q. Wang, "Optimization of water mist droplet size by using CFD modeling for fire suppressions", Journal of Loss Prevention in the Process Industries, Vol. 44, 2016, pp. 626~632. https://doi.org/10.1016/j.jlp.2016.04.010
  11. C. N. Huang and Y. H. Ye, "Development of a water-mist cooling system: A 12,500 Kcal/h air-cooled chiller", Energy Reports, Vol. 1, 2015, pp. 123~128. https://doi.org/10.1016/j.egyr.2015.04.002
  12. Y. Hikosaka, M. Kanechi, M. Sato and Y. Uno, "Dry-fog Aeroponics Affects the Root Growth of Leaf Lettuce (Lactuca sativa L. cv. Greenspan) by Changing the Flow Rate of Spray Fertigation", Environmental Control in Biology, Vol. 53, No. 4, 2015, pp. 181~187.
  13. Z. Ning and K. Zhu, "Research on Prevention and Control Technologies of Harbor Pollution", 2009 International Conference on Energy and Environment Technology, 2009, pp. 713~716.
  14. T. Cutts, S. Kasloff, D. Safronetz and J. Krishnan, "Decontamination of common healthcare facility surfaces contaminated with SARS-CoV-2 using peracetic acid dry fogging", Journal of Hospital Infection, Vol. 109, 2021, pp. 82~87. https://doi.org/10.1016/j.jhin.2020.12.016
  15. Y. Murata, Y. Kudo and M. Yonezawa, "Characteristics of a Dry Fog Ionizer", Journal of Physics: Conference Series, Vol. 142, 2008, 012066. https://doi.org/10.1088/1742-6596/142/1/012066
  16. J. Krishnan, G. Fey, C. Stansfield, L. Landry, H. Nguy, S. Klassen and C. Robertson, "Evaluation of a Dry Fogging System for Laboratory Decontamination", Applied Biosafety, Vol. 17, No. 3, 2012, pp. 132~141. https://doi.org/10.1177/153567601201700305
  17. S. K. Chaulya, A. Chowdhury, S. Kumar. R. S. Singh, S. K. Singh, R. K. Singh, G. M. Prasad, S. K. Mandal and G. Banerjee, "Fugitive Dust Emission Control Study for a developed smart dry fog system", Journal of Environmental Management, Vol. 285, 2021, 112116.
  18. A. Arbel, O. Yekutieli and M. Barak, "Performance of a Fog System for Cooling Greenhouse", Journal of Agricultural Engineering Research, Vol. 72, No. 2, 1999, pp. 129~136. https://doi.org/10.1006/jaer.1998.0351
  19. Kendarto, D. R. Handarto, M. Saukat, T. Herwanto and K. Pandiangan, "Enhancement of Droplets Quality for fog cooling system in a naturally-ventilated greenhouse using centrifugal and axial fans", IOP Conference Series: Earth and Environmental Science, Vol. 542, 2020, 012032. https://doi.org/10.1088/1755-1315/542/1/012032
  20. A. Haeussermann, E. Hartung, T. Jungbluth, E. Vranken, J. M. Aerts and D. Berckmans, "Cooling effects and evaporation characteristics of fogging systems in an experimental piggery", Biosystems Engineering, Vol. 97, No. 3, 2007, pp. 395~405. https://doi.org/10.1016/j.biosystemseng.2007.03.019
  21. V. Priedniece, V. Kirsanovs, M. Dzikevics, Ģ. Vigants, I. Veidenbergs and D. Blumberga, "Experimental and analytical study of the flue gas condenser-fog unit", Energy Procedia, Vol. 158, 2019, pp. 822~827. https://doi.org/10.1016/j.egypro.2019.01.215
  22. H. Toida, T. Kozai, K. Ohyama and Handarto, "Enhancing Fog Evaporation Rate using an Upward Air Stream to improve Greenhouse Cooling Performance", Biosystems Engineering, Vol. 93, No. 2, 2006, pp. 205~211. https://doi.org/10.1016/j.biosystemseng.2005.11.003
  23. S. Buhl, A. Stich and C. Bulitta, "Dry fog disinfection as an alternative method for room decontamination", Current Directions in Biomedical Engineering, Vol. 7, No. 2, 2021, pp. 427~429. https://doi.org/10.1515/cdbme-2021-2108
  24. S. M. A. Najafi, P. Mikaniki and H. Ghassemi, "Microscopic and macroscopic atomization characteristics of a pressure-swirl atomizer, injecting a viscous fuel oil", Chinese Journal of Chemical Engineering, Vol. 28, No. 1, 2020, pp. 9~22. https://doi.org/10.1016/j.cjche.2019.04.006
  25. M. Chaker, C. B. Meher-Homji and T. Mee III, "Inlet Fogging of Gas Turbine Engines: Part B - Fog Droplet Sizing Analysis, Nozzle Types, Measurement and Testing", ASME Turbo Expo 2002: Power for Land, Sea, and Air, Vol. 4, 2002, pp. 429~441.
  26. S. Wadekar, A. Yamaguchi and M. Oevermann, "Large-Eddy Simulation Study of Ultra-High Fuel Injection Pressure on Gasoline Sprays", Flow, Turbulence and Combustion, Vol. 107, 2021, pp. 149~174. https://doi.org/10.1007/s10494-020-00231-0
  27. Y. Gao, X. Li, P. Chang and L. Liu, "Experimental Study on Deliquification with Atomizing Nozzle in Gas Well", IOP Conference Series: Earth and Environmental Science, Vol. 555, 2020, 012127. https://doi.org/10.1088/1755-1315/555/1/012127
  28. E. Barakat, T. Jin, H. Wang, K. Hu and G. Wang, "Experimental and numerical study of fogging cooling performance through a cylindrical duct for a micro gas turbine", Applied Thermal Engineering, Vol. 207, 2022, 118115. https://doi.org/10.1016/j.applthermaleng.2022.118115
  29. B. Chen, D. Gao, Y. Li, C. Chen, X. Yuan, Z. Wang and P. Sun, "Investigation of the droplet characteristics and size distribution during the collaborative atomization process of a twin-fluid nozzle", The International Journal of Advanced Manufacturing Technology, Vol. 107, 2020, pp. 1625~1639. https://doi.org/10.1007/s00170-020-05131-1
  30. S. Li, C. Chen, Y. Wang, F. Kang and W. Li, "Study on the Atomization Characteristics of Flat Fan Nozzles for Pesticide Application at Low Pressures", Agriculture, Vol. 11, No. 4, 2021, 309. https://doi.org/10.3390/agriculture11040309
  31. G. Gao, C. Wang and Z. Kou, "Experimental Studies on the Spraying Pattern of a Swirl Nozzle for Coal Dust Control", Applied Sciences, Vol. 8, No. 10, 2018, 1770. https://doi.org/10.3390/app8101770
  32. S. Mandato, E. Rondet, G. Delaplace, A. Barkouti, L. Galet, P. Accart, T. Ruiz and B. Cuq, "Liquids' atomization with two different nozzles: Modeling of the effects of some processing and formulation conditions by dimensional analysis", Powder Technology, Vol. 224, 2012, pp. 323~330. https://doi.org/10.1016/j.powtec.2012.03.014
  33. J. Y. Kim, S. J. Lee and J. G. Hong, "Spray Mode and Monodisperse Droplet Properties of an Electrospray", ACS Omega, Vol. 7, No. 32, 2022, pp. 28667~28674. https://doi.org/10.1021/acsomega.2c04002
  34. J. Y. Kim, S. J. Lee, G. Y. Baik and J. G. Hong, "Effects of working fluids on spray modes and atomization characteristics in electrospray", J. Korean Soc. Precis. Eng, Vol. 38, 2021, pp. 61~68. https://doi.org/10.7736/JKSPE.020.100
  35. K. W. Ku, J. G. Hong and C. W. Park, "Effect of assist-air of twin fluid atomizer on urea thermal decomposition", Atomization Sprays, Vol. 25, 2015, pp. 895~915. https://doi.org/10.1615/AtomizSpr.2015011919