DOI QR코드

DOI QR Code

부가여과판에 따른 최소한의 피폭 위치에 대한 분석

Analysis of the minimum exposure position according to the additional filtration plate

  • 김태리 (대전보건대학교 방사선과) ;
  • 강민지 (대전보건대학교 방사선과) ;
  • 라상희 (대전보건대학교 방사선과) ;
  • 신윤정 (대전보건대학교 방사선과) ;
  • 홍태겸 (대전보건대학교 방사선과) ;
  • 전민철 (대전보건대학교 방사선과)
  • Tae-Ri, Kim (Department of Radiology, Daejeon Health Institute of Technology) ;
  • Min-Ji, Kang (Department of Radiology, Daejeon Health Institute of Technology) ;
  • Sang-Hee, La (Department of Radiology, Daejeon Health Institute of Technology) ;
  • Yun-Jeong, Shin (Department of Radiology, Daejeon Health Institute of Technology) ;
  • Tae-Gyeom, Hong (Department of Radiology, Daejeon Health Institute of Technology) ;
  • Min-Cheol, Jeon (Department of Radiology, Daejeon Health Institute of Technology)
  • 투고 : 2022.11.16
  • 심사 : 2022.12.21
  • 발행 : 2022.12.30

초록

본 연구는 X선 검사실에서 환자와 함께 있어야 하는 상황에 의료종사자가 최소한의 선량을 받을 수 있는 위치를 알아보고자 한다. RQR 표준 선질을 설정하기 위해 가로, 세로 10 cm인 Al 1.5 mm의 부가여과판을 X선관에 부착하였다. 부가여과판은 Al 0.9 mm, Cu 0.3 mm, Ni 0.3 mm를 사용하였다. Acrylic Phantom은 각각 13.1 cm, 18.5 cm, 21.2 cm으로 설정하여 피사체 두께를 달리하였다. 그 결과 Al 0.9 mm를 사용하였을 때 Acrylic Phantom 13.1 cm의 anode low 50 cm 위치가 1853 nSv로 산란선의 영향을 가장 많이 받았고, Cu 0.3 mm를 사용하였을 때 Acylic Phantom 두께 13.1 cm의 anode low 150 cm 위치가 173 nSv로 산란선의 영향을 가장 적게 받았다. 본 연구로 X선관과 멀어질수록 공간산란선량이 감소되는 것을 확인하였다. 향후 산란선량의 피폭에 대한 더 많은 연구가 필요할 것으로 사료된다.

The purpose is to find out where medical workers can receive the minimum radiation does in clinical. In order to sett RQR standard quality of radiation, put a Al 1.5mm filter(row and column: 10 cm × 10 cm) on X-ray tube. Al 0.9 mm, Cu 0.3 mm, Ni 0.3 mm used as a filter. The Acrylic phantom were set to 13.1 cm, 18.5 cm, 21.1 cm. by the object thickness was different. As a results, when we use Al 0.9 mm, 1853 nSv was the highest numeral. It is a point of anode low 50 cm, when we use 13.1 cm Acrylic phantom. When we use Cu 0.3 mm, 173 nSv was the lowest numeral. It is a point of anode low 150 cm, when we use 13.1 cm Acrylic Phantom. In this study, it was confirmed that the spatial scattering dose decreased as the distance from the X-ray tube increased. It is considered that more studies on the exposure of scattered doses are needed in the future.

키워드

과제정보

이 논문은 교육부 산하 한국연구재단 LINC 3.0 사업비 지원에 의하여 연구되었음.

참고문헌

  1. P. K. Cho. (2022). The Importance of Positioning in General X-ray Examination: Based on Chest PA X-ray. Radiation technology, 45(3), 249-254. DOI : 10.17946/JRST.2022.45.3.249
  2. M. E. Jeon, C. H. Lim, H. R Jung, I. G. Yu, D. H. Hong & B. S Kang. (2012). A Study on Radiation Exposure Dose of Operator During Interventional Radiology Procedure. Radiation technology, 35(3), 219-226.
  3. K. H. Choi & J. K. Cho. (2018). Statistical analysis of national examination for radiological technologists in convergence perspective. Journal of the Korea Convergence Society, 9(5), 85-90. DOI : 10.15207/JKCS.2018.9.5.085
  4. M. H. Choi, J. S. Jang & K. B. Lee. (2019). A Study on the Indirect Radiation Exposure of the Medical Personnel Who is Responsible for Patient Safety in CT Examination. Radiation technology, 42(2), 105-111. DOI : 10.17946/JSRT.2019.42.2.105
  5. Radiation Health Management Textbook Compilation Committee. (2022). Radation protection & safety. Seoul : Chung-Ku Publisher
  6. S. K. Na & S. H. Han. (2009). A Study on the Factors of Spatial Scattered Ray Occurrence in the X-ray Radiography Room. Radiation technology. 32(4), 393-399
  7. S. H. Kim. (2020). Evaluation of Dose and Image Quality According to Heel Effect of Diagnostic Radiation Generator, Master's thesis. The Graduate School of Health Promotion Hanseo University, Seosan.
  8. V. T. Duong, Q. T. Ho & D. K. Bui. (2104). Establishing the standard X-ray beam qualities for calibration of dosimetersused in diagnostic radiology following IAEA-TRS457. No. VINATOM-AR-13. 2014.
  9. N. B. Myoung, S. Y. Im, S. J. Yoo, S. H. Kim & M. C. Jeon. (2020). Dose and Image Quality Analysis According to The Type of Composite Additional Filter. Journal of the korea convergence society, 11(10), 147-154. DOI : 10.15207/JKCS.2020.11.10.147
  10. S. H. Kim. (2015). A Convergence Study on Evaluation of Usefulness of Copper Additional Filter in the Digital Radio graphy System. Digital Convergence Research, 13(9), 351-359. DOI : 10.14400/JDC.2015.13.9.351
  11. S. H. Jeong & J. H. Yoo & C. H. Lim. (2021). A Study on the Comparative Analysis of Images and Doses According to Tube Orientation During Anterior-Posterior Axial Projection Examination of the Skull. Radiation technology. 44(4), 301-302 DOI : 10.17946/JRST.2021.44.4.301
  12. K. W. Kim. & J. H. Son. (2016). Study on Exposure Dose According to Change of Source to Image Distance and Additional Filter Using Abdomen Phantom. Journal of Radiological Science and Technology, 39(3), 407-414. DOI : 10.17946/JRST.2016.39.3.15
  13. P. K. Cho. (2011). Distribution of the Scatter Ray in Fluoroscopy X-ray Room. International Journal of contents, 11(10), 349-354 DOI : 10.5392/JKCA.2011.11.10.349
  14. C. G. Kim. (2014). Spatial dose distribution and exposure dose during lumbar lateral test. Journal of the Korea Convergence Society, 5(1), 17-22. DOI : 10.15207/JKCS.2014.5.1.017
  15. S. M. Baek & E. S. Jang. (2011). Comparative evaluation of radiation exposure in radiation-related workers. Journal of the Korean Society of Radiology, 5(4), 195-200,  https://doi.org/10.7742/jksr.2011.5.4.195