DOI QR코드

DOI QR Code

Development and Performance Evaluation of X-Ray Shields using Fe2O3 and Al2O3

산화철, 알루미나를 이용한 X선 차폐체 개발 및 성능 평가

  • Hui-Su, Yang (Department of Radiology, Daejeon Health Institute of Technology) ;
  • Ji-Hwan, Kim (Department of Radiology, Daejeon Health Institute of Technology) ;
  • Min-Cheol, Jeon (Department of Radiology, Daejeon Health Institute of Technology)
  • 양희수 (대전보건대학교 방사선과) ;
  • 김지환 (대전보건대학교 방사선과 ) ;
  • 전민철 (대전보건대학교 방사선과 )
  • Received : 2022.11.19
  • Accepted : 2022.12.21
  • Published : 2022.12.30

Abstract

It is intended to evaluate the performance of the shield after manufacturing a shield with cheap and eco-friendly iron oxide and alumina instead of lead, which is a radiation shielding material. After manufacturing the shield by mixing iron oxide and alumina with gypsum, the performance is evaluated by comparing it with gypsum board and lead apron using an X-ray tube. As a result of the experiment, the shielding performance of alumina was lower than that of the gypsum board, and when 50% of alumina was contained, the shielding performance was similar to that of the gypsum board. Iron oxide became similar to the shielding performance of lead apron when it contained about 75%. A shielding material using alumina shows shielding performance similar to that of gypsum, so it is not suitable as a substitute for lead. However, since iron oxide exhibits similar shielding performance to lead, it can be used as an X-ray shielding material to replace lead in the future, so further research is needed.

방사선 차폐 물질인 납을 대신하여 싸고 친환경적인 산화철, 알루미나로 차폐체를 제작 후 차폐체의 성능을 평가하고자 한다. 산화철과 알루미나 각각 석고와 혼합하여 차폐체를 제작 이후 X-ray Tube를 이용하여 석고보드, 납복과 비교하여 성능을 평가한다. 관전압에 변화를 주며 실험한 결과 알루미나의 차폐 성능은 석고보드보다 차폐 성능이 떨어졌으며 50%의 알루미나가 함유되었을 때 석고보드와 차폐 성능이 비슷하였다. 산화철은 약 75%가 함유되었을 때 납복의 차폐 성능과 비슷해졌다. 알루미나를 이용한 차폐체는 석고와 비슷한 차폐 성능을 보여줘 납 대체물질로 적합하지는 않다. 하지만 산화철은 납복과 비슷한 차폐 성능을 나타내어 향후 납을 대체하는 X선 차폐 물질로 활용이 가능하기에 추가 연구가 필요하다.

Keywords

Acknowledgement

이 논문은 교육부 산하 한국연구재단 LINC 3.0 사업비 지원에 의하여 연구되었음.

References

  1. S. C. Kim. (2021). Verification of the Possibility of Convergence Medical Radiation Shielding Sheet Using Eggshells. Journal of the Korea Converence Society, 12(6), 33-38. DOI : 10.15207/JKCS.2021.12.6.033 
  2. J. P. McCaffrey, H. Shen, B. Downton & E. Mainegra-Hing. (2007). Radiation attenuation by lead and nonlead materials used in radiation shielding garments. Medical Physics, 34(2), 530-537. DOI : 10.1118/1.2426404 
  3. H. M. Jang. (2019). Usefulness Eval uation and Fabrication of the Radiation Shield Using 3D Printing Technology. Journal of the Korean Society of Radiology, 13(7), 1015-1024. DOI : 10.7742/JKSR.2019.13.7.1015 
  4. S. C. Kim. (2013). Barium Compounds through Monte Carlo Simulations Compare the Performance of Medical Radiation Shielding Analysis. Journal of the Korea Society of Radiology, 7(6), 403-408. DOI : 10.7742/JKSR.2013.7.6.403 
  5. S. J Kim. (2020). Development and Performance Evaluation of Eco-Friendly X-Ray Shields using BaSO4. Journal of Radiation Industry, 14(1), 13-18. DOI : 10.23042/RADIN.2020.14.1.13 
  6. Y. J. Choi. (2017). A convergence study on the exposure levels of lead and cardiovascular diseases in adults women using the 7th Korea National Health and Nutrition Examination Survey. Journal of the Korea Convergence Society, 13(3), 113-124. DOI : 10.15207/JKCS.2022.13.03.113 
  7. Mori H. (2014) Evaluation of the effectiveness of X-ray protective aprons in experimental and practical fields, Radiological Physics and Technology, 7(1), 158-166. DOI : 10.1007/s00540-016-2140-2 
  8. S. C. Kim & M. H. Park. (2010). Development of Radiation Shield with Environmentally-Friend ly Materials; II: Evalustion of Barum, Tourmaline, Silicon Polymers in the Radiation Shielding Sheet. Journal of radiological science and technology, 34(2), 141-147. 
  9. M. DeVanzo & R. B. Hayes. (2020). Ionizing radiation shielding properties of metal oxide impregnated conformal coatings, Radiation Physics and Chemistry. DOI : 10.1016/j.radphyschem.2020.108685. 
  10. Matsuda M, Suzuki T(2016). Evaluation of lead aprons and their maintenance and management at our hospital. J Anesth, 30(3), 518-21. DOI : 10.1007/s12194-013-0246-x 
  11. E. Al-Sarraya, I. Akkurta, K. Gunoglub, A. Evcinc & N.C. Bezira. (2017). Radiation Shielding Properties of Some Composite Panel. Acta physica polonica series a, 132(3), 490-492. DOI : 10.12693/APhysPolA.132.490 
  12. K. S. Chon. (2017) Monte Carlo Simulation for Radiation Protection Sheets of Pb-Free, Journal of the Korean Society of Radiology, 11(4), 189-195. DOI:10.7742/JKSR.2017.11.4.189. 
  13. J. S. Kim. (2018). Evaluation of Energy Dependency for Air Kerma Area Product by RQR Beam Quality and Indirect Calibration. Journal of the Korean Society of Radiology, 12(6), 769-776. DOI : 10.7742/JKSR.2018.12.6.769 
  14. I. Akkurt. (2006). Radiation shielding of concretes containing different aggregates. Cem. Concr. Compos. 28, 153-157. DOI : 10.1016/j.cemconcomp.2005.09.006 
  15. S. C. Kim. (2021). Construction of a Medical Radiation-Shielding Environment by Analyzing the Weaving Characteristics and Shielding Performance of Shielding Fibers Using X-ray-Impermeable Materials. Applied Science, 11(4), 1705. DOI : 10.3390/app11041705