DOI QR코드

DOI QR Code

Calculation of the Earthquake Vulnerability of the Bridge Foundation Considering the Characteristics of the Ground

지반의 특성을 고려한 교량기초의 지진취약도 산정

  • Lee, Donggun (Department of Civil Engineering, Inha University) ;
  • Song, Kiil (Department of Civil Engineering, Inha University)
  • Received : 2021.11.19
  • Accepted : 2022.01.17
  • Published : 2022.02.01

Abstract

The ground-structure interaction of the bridge foundation has been pointed out as a major factor influencing the behavior of the bridge during earthquakes. In this study, the effect of characteristics of ground and bridge foundation on the earthquake vulnerability is investigated. From the pseudo-static analysis, it is confirmed that non-linearity becomes lesser and horizontal load becomes greater when surcharge is considered. It is also found that as the ground worsens and the size of foundation decreases, horizontal load reduces. To derive reasonable structural model for bridge foundation, fragility curve is obtained considering four conditions (fixed condition, equivalent linear condition, non-linear without surchage condition, non-linear with surcharge condition) and compared. Seismic analysis is performed on single pier with Opensees. From the earthquake vulnerability analysis, it is found that shallow foundation can be assumed as fixed condition. In conservative approach, stiffness of spring can be obtained based on Korean highway bridge design code for pile foundation which can consider the ground condition.

교량 기초의 지반-구조물 상호작용은 지진 시 교량의 거동에 영향을 미치는 주요한 요인으로 지적되어 왔다. 본 연구에서는 지반의 특성 및 기초의 특성이 교량 기초의 지진취약도에 미치는 영향을 분석하였다. 지반의 특성 변화 및 기초의 크기 변화를 고려한 등가정적해석 결과, 상재하중이 작용하는 경우 같은 수준의 횡방향 변위를 발생시키기 위해 요구되는 하중이 증가되는 것을 확인할 수 있었으며, 비선형성은 상재하중이 없는 경우가 더 큰 것으로 나타났다. 느슨한 지반에서 조밀한 지반으로 갈수록 기초의 크기가 증가할수록 동일한 변위를 발생시키기 위해 더 큰 하중을 필요로 하는 것으로 나타났다. 또한, 교량의 지진취약도를 합리적으로 획득하기 위한 접근법을 도출하기 위하여 교량 기초의 지진취약도를 4가지의 조건(고정단 조건, 도로교 설계기준-등가선형강성, 상재하중 고려 시 및 미고려 시 비선형 강성)을 고려하여 비교하였다. 단주교각에 대한 지진해석은 Opensees를 이용하여 수행하였다. 지진취약도 분석 결과, 보수적인 접근법으로 확대기초는 고정단으로 고려할 수 있으며, 말뚝기초의 크기가 작은 경우는 고정단으로 고려하여 안전측 설계를 검토할 수 있으나, 말뚝의 크기가 대형화 하는 경우는 비경제적인 설계가 될 수 있으므로, 지반조건에 따라 기초의 강성을 평가할 수 있는 도로교 등가 선형 스프링 강성을 고려하는 것이 합리적인 접근법으로 판단된다.

Keywords

Acknowledgement

본 연구는 국토교통부 건설기술연구사업의 연구비지원(20SCIP-B146946-03)에 의해 수행되었습니다.

References

  1. Baker, JW. (2005), Vector-valued ground motion intensity measures for probabilistic seismic demand analysis, Standford University.
  2. Bernardo, F. (2012), Pushover seismic analysis of bridge structures, Departamento de engenharia Civil, Arquitectura e Georrecursos, Technical University of Lisbon.
  3. Cornell. (2002), Probabilistic basis for 2000 SAC FEMA steel moment frame guidelines, Journal of Structural Engineering, Vol 128, No. 4, pp. 526~533. https://doi.org/10.1061/(asce)0733-9445(2002)128:4(526)
  4. Dalia, S. and Abdul-Hamid (2008), Reliability-based analysis of strip footings using response surface methodology, International Journal of Geomechanics, American Society of Civil Engineers, Vol. 8, No. 2, pp. 134~143. https://doi.org/10.1061/(ASCE)1532-3641(2008)8:2(134)
  5. Han, S. R., Lee, H. D. and Lee, C. S. (2016), Seismic fragility of underground utility tunnels considering probabilistic site response analysis, Journal of Korean Society of Hazard Mitigation, Korean Society of Hazard Mitigation, Vol. 16, No. 3, pp. 31~37 (In Korean). https://doi.org/10.9798/KOSHAM.2016.16.3.31
  6. Kim, J. C. (2008), Seismic fragility analysis of a FCM bridge considering soil properties, Jorunal of the Earthquake Engineering Society of Korea, Vol. 12, No. 3, pp. 37~44 (In Korean). https://doi.org/10.5000/EESK.2008.12.3.037
  7. Lee, J. H. (2006), Probabilistic seismic risk assessment of bridges and ground, 19th technical workshop, Jorunal of the Earthquake Engineering Society of Korea, pp. 157~177 (In Korean).
  8. PEER. (2019), Pacific Earthquake Engineering Research Center. Available at: https://ngawest2.berkeley.edu
  9. PWRI. (2015), A Study on the Damage Assessment and Repair and Reinforcement Methods for Footings Damaged by Alkali Silica Reaction, Civil Engineering Research Institute Data No. 4304
  10. Shinozuka, M. (2000), Nonlinear static procedure for fragility curve development, Journal of Engineering Mechanics, Vol. 126, No. 12, pp. 1287~1295. https://doi.org/10.1061/(ASCE)0733-9399(2000)126:12(1287)
  11. Shinozuka, M., Feng, M.Q., Lee, J. and Naganuma, T. (2000), Statistical analysis of fragility curves, Journal of Engineering Mechanics, ASCE, Vol. 126, No. 12, pp. 1224~1231. https://doi.org/10.1061/(ASCE)0733-9399(2000)126:12(1224)
  12. Seo, H., Kim, B. and Park, D. (2021), Seismic fragility evaluation of inverted T-type wall with a backfill slope considering site conditions, KSCE Journal of Civil and Environmental Engineering Research, Vol. 41, No. 5, pp. 533~541 (In Korean). https://doi.org/10.12652/KSCE.2021.41.5.0533