DOI QR코드

DOI QR Code

HERMITE-TYPE EXPONENTIALLY FITTED INTERPOLATION FORMULAS USING THREE UNEQUALLY SPACED NODES

  • Kim, Kyung Joong (School of Liberal Arts and Sciences Korea Aerospace University)
  • Received : 2021.01.08
  • Accepted : 2021.08.13
  • Published : 2022.01.31

Abstract

Our aim is to construct Hermite-type exponentially fitted interpolation formulas that use not only the pointwise values of an 𝜔-dependent function f but also the values of its first derivative at three unequally spaced nodes. The function f is of the form, f(x) = g1(x) cos(𝜔x) + g2(x) sin(𝜔x), x ∈ [a, b], where g1 and g2 are smooth enough to be well approximated by polynomials. To achieve such an aim, we first present Hermite-type exponentially fitted interpolation formulas IN built on the foundation using N unequally spaced nodes. Then the coefficients of IN are determined by solving a linear system, and some of the properties of these coefficients are obtained. When N is 2 or 3, some results are obtained with respect to the determinant of the coefficient matrix of the linear system which is associated with IN. For N = 3, the errors for IN are approached theoretically and they are compared numerically with the errors for other interpolation formulas.

Keywords

References

  1. R. L. Burden and J. D. Faires, Numerical Analysis, Brooks/Cole, 2001.
  2. A. Cardone, R. D'Ambrosio, and B. Paternoster, High order exponentially fitted methods for Volterra integral equations with periodic solution, Appl. Numer. Math. 114 (2017), 18-29. https://doi.org/10.1016/j.apnum.2016.05.003
  3. J. P. Coleman and L. Gr. Ixaru, Truncation errors in exponential fitting for oscillatory problems, SIAM J. Numer. Anal. 44 (2006), no. 4, 1441-1465. https://doi.org/10.1137/050641752
  4. A. Ghizzetti and A. Ossicini, Quadrature Formulae, Academic Press, New York, 1970.
  5. D. Hollevoet, M. Van Daele, and G. Vanden Berghe, Exponentially fitted methods applied to fourth-order boundary value problems, J. Comput. Appl. Math. 235 (2011), no. 18, 5380-5393. https://doi.org/10.1016/j.cam.2011.05.049
  6. L. Gr. Ixaru, Operations on oscillatory functions, Comput. Phys. Comm. 105 (1997), no. 1, 1-19. https://doi.org/10.1016/S0010-4655(97)00067-2
  7. L. Gr. Ixaru and B. Paternoster, A Gauss quadrature rule for oscillatory integrands, Comput. Phys. Comm. 133 (2001), no. 2-3, 177-188. https://doi.org/10.1016/S0010- 4655(00)00173-9
  8. L. Gr. Ixaru and G. Vanden Berghe, Exponential Fitting, Mathematics and its Applications, 568, Kluwer Academic Publishers, Dordrecht, 2004. https://doi.org/10.1007/978-1-4020-2100-8
  9. L. Gr. Ixaru, G. Vanden Berghe, and H. De Meyer, Frequency evaluation in exponential fitting multistep algorithms for ODEs, J. Comput. Appl. Math. 140 (2002), no. 1-2, 423-434. https://doi.org/10.1016/S0377-0427(01)00474-5
  10. K. J. Kim, Two-frequency-dependent Gauss quadrature rules, J. Comput. Appl. Math. 174 (2005), no. 1, 43-55. https://doi.org/10.1016/j.cam.2004.03.020
  11. K. J. Kim, Error analysis for frequency-dependent interpolation formulas using first derivatives, Appl. Math. Comput. 217 (2011), no. 19, 7703-7717. https://doi.org/10.1016/j.amc.2011.02.073
  12. K. J. Kim, Exponentially fitted interpolation formulas involving first and higher-order derivatives, J. Appl. Math. Inform. 31 (2013), no. 5-6, 677-693. https://doi.org/10.14317/jami.2013.677
  13. K. J. Kim, Exponentially fitted interpolation formulas depending on two frequencies, J. Appl. Math. Inform. 34 (2016), no. 3-4, 207-220. https://doi.org/10.14317/jami.2016.207
  14. K. J. Kim and R. Cools, Extended exponentially fitted interpolation formulas for oscillatory functions, Appl. Math. Comput. 224 (2013), 178-195. https://doi.org/10.1016/j.amc.2013.08.039
  15. K. Kim, R. Cools, and L. Gr. Ixaru, Extended quadrature rules for oscillatory integrands, Appl. Numer. Math. 46 (2003), no. 1, 59-73. https://doi.org/10.1016/S0168-9274(03)00009-6
  16. Matlab, Language of Technical Computing, Mathworks, Inc.