DOI QR코드

DOI QR Code

𝜇-COUNTABLY COMPACTNESS AND 𝜇𝓗-COUNTABLY COMPACTNESS

  • Received : 2020.11.23
  • Accepted : 2021.01.20
  • Published : 2022.01.31

Abstract

We define and study the notion of 𝜇-countably compact spaces in generalized topology and 𝜇𝓗-countably compact spaces which are considered with respect to a hereditary class 𝓗. Some interesting properties and relations are provided in the paper. Moreover, some preservation of functions properties are studied and investigated.

Keywords

Acknowledgement

The authors would like to thank the referees for their valuable comments and suggestions to improve this paper.

References

  1. Z. Altawallbeh, More on almost countably compact spaces, Italian J. Pure Appl. Math. 43 (2020), 177-184.
  2. Z. Altawallbeh and A. Al-Momany, Nearly countably compact spaces, Int. Electron. J. Pure Appl. Math. 8 (2014), no. 4, 59-66. https://doi.org/10.12732/iejpam.v8i4.7
  3. C. Carpintero, E. Rosas, M. Salas-Brown, and J. Sanabria, µ-compactness with respect to a hereditary class, Bol. Soc. Parana. Mat. (3) 34 (2016), no. 2, 231-236. https://doi.org/10.5269/bspm.v34i2.27177
  4. A. Csaszar, Generalized topology, generalized continuity, Acta Math. Hungar. 96 (2002), no. 4, 351-357. https://doi.org/10.1023/A:1019713018007
  5. A. Csaszar, Generalized open sets in generalized topologies, Acta Math. Hungar. 106 (2005), no. 1-2, 53-66. https://doi.org/10.1007/s10474-005-0005-5
  6. A. Csaszar, Modification of generalized topologies via hereditary classes, Acta Math. Hungar. 115 (2007), no. 1-2, 29-36. https://doi.org/10.1007/s10474-006-0531-9
  7. A. Csaszar, Weak structures, Acta Math. Hungar. 131 (2011), no. 1-2, 193-195. https://doi.org/10.1007/s10474-010-0020-z
  8. K. Kuratowski, Topologie, Warszawa. I (1933).
  9. A. Pavlovic, Local function versus local closure function in ideal topological spaces, Filomat 30 (2016), no. 14, 3725-3731. https://doi.org/10.2298/FIL1614725P
  10. A. Qahis, H. H. AlJarrah, and T. Noiri, µ-Lindelofness in terms of a hereditary class, Missouri J. Math. Sci. 28 (2016), no. 1, 15-24. http://projecteuclid.org/euclid.mjms/1474295352
  11. L. E. de Arruda Saraiva, Generalized quotient topologies, Acta Math. Hungar. 132 (2011), no. 1-2, 168-173. https://doi.org/10.1007/s10474-010-0047-1
  12. M. S. Sarsak, Weak separation axioms in generalized topological spaces, Acta Math. Hungar. 131 (2011), no. 1-2, 110-121. https://doi.org/10.1007/s10474-010-0017-7
  13. M. S. Sarsak, Weakly µ-compact spaces, Demonstratio Math. 45 (2012), no. 4, 929-938. https://doi.org/10.1515/dema-2013-0411
  14. A. M. Zahran, K. El-Saady, and A. Ghareeb, Modification of weak structures via hereditary classes, Appl. Math. Lett. 25 (2012), no. 5, 869-872. https://doi.org/10.1016/j.aml.2011.10.034