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µ-COUNTABLY COMPACTNESS AND µH-COUNTABLY

COMPACTNESS

Zuhier Altawallbeh and Ibrahim Jawarneh

Abstract. We define and study the notion of µ-countably compact

spaces in generalized topology and µH-countably compact spaces which
are considered with respect to a hereditary class H. Some interesting

properties and relations are provided in the paper. Moreover, some preser-
vation of functions properties are studied and investigated.

1. Introduction

A collection µ of subsets of a nonempty set X is a generalized topology (GT)
if φ ∈ µ and any union of elements of µ belongs to µ, this notion was introduced
by Császár in the sense of [4]. The elements of µ are called µ-open sets and
their complements are called µ-closed sets, see [5]. In this paper, we denote
the µ-open set by uµ, the family {uµα : α ∈ ∆} is a µ-open cover of the set X
if X =

⋃
{uµα : α ∈ ∆}. In particular, X is a µ-compact space if every µ-open

cover of X has a finite subcover, more generalizations can be seen in [3, 10],
where some covering spaces are studied in the generalized topology with respect
to a hereditary class H, the hereditary class φ 6= H on a set X is a collection of
subsets of X that satisfies the following property: If A ∈ H and B ⊂ A, then
B ∈ H, see [6]. If the hereditary class H satisfies the additional condition: If
A,B ∈ H implies A∪B ∈ H, then H is called an ideal on X, see [8]. We define
hereditary generalized topological space (X,µ,H) as a generalized topological
space (X,µ) with hereditary classH. Assume that A is a nonempty subset ofX.
Then the generalized local function A∗ of A with respect to H and µ is defined
as A∗ = {x ∈ X : for all uµ ∈ µ(x), we have uµ∩A /∈ H}, c∗µ(A) = A ∪ A∗ and
there is a GT µ∗ = {A ⊂ X : X \A = c∗µ(X \A)}, see [6]. An element of µ∗ is
called µ∗-open and its complement is µ∗-closed, and c∗µ(A) is the intersection
of all µ∗-closed supersets of A. Recall that cµ(A) is the intersection of all
µ-closed supersets of A. Then cµ(A) is µ-closed for A ⊂ X and x ∈ cµ(A)
if and only if x ∈ uµ ∈ µ implies that uµ ∩ A 6= φ, see [9]. In this paper,
we define µ-countably compact spaces and µH-countably compact spaces as
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generalizations of µ-compact spaces and µH-compact spaces, respectively, with
some interesting results regarding (X,µ∗) as a GTS and some relations in the
sense of generalized topologies and hereditary classes are presented very well
in logical order.

2. µ-countably compact and µH-countably compact spaces

In this section, we introduce and study the notion of countably compact
spaces in the sense of a GTS and a hereditary class with some interesting
properties.

Definition. A GTS (X,µ) is said to be a µ-countably compact space if for
every countable µ-open cover {uµα : α ∈ ∆} of X, there is a finite subset Λ of
∆ such that X =

⋃
{uµα : α ∈ Λ}

Definition. Let (X,µ) be a GTS. A subset A of X is said to be a µ-countably
compact set if for every countable µ-open cover {uµα : α ∈ ∆} of A, there is a
finite subset Λ of ∆ such that A ⊂

⋃
{uµα : α ∈ Λ}.

Definition. A HGTS (X,µ,H) is said to be a µH-countably compact space or
a µ-countably compact space with respect to a hereditary class H if for every
countable µ-open cover {uµα : α ∈ ∆} of X, there is a finite subset Λ of ∆ such
that X \

⋃
{uµα : α ∈ Λ} ∈ H.

It is noted that µH-countably compactness refers to X \ {uµα : α ∈ Λ} ∈
H. As an analogous point of view, µ-countably compactness refers to X \
{uµα : α ∈ Λ} = φ ∈ H. The assumption of countability remains as it is in these
definitions. This kind of analogy together with the notion of hereditary classes
motivates us to expect interesting generalizations and analogous properties of
topological spaces in the sense of generalized topologies discussed in this paper.

Definition. Let (X,µ,H) be a HGTS. A subset A of X is said to be a µH-
countably compact set if for every countable µ-open cover {uµα : α ∈ ∆} of A,
there is a finite subset Λ of ∆ such that A \

⋃
{uµα : α ∈ Λ} ∈ H.

It is clear that if a GTS (X,µ) is a µ-countably compact space, then a HGTS
(X,µ,H) is a µH-countably compact space for any hereditary class H. The
following example shows that the converse may not be true. But if we use
certain hereditary classes, then we can get the converse as in Theorem 2.2.

Example 2.1. Let µ = {u ⊆ R : u is uncountable} ∪ {φ} be a GTS on R and
H = {R \ u : u ∈ µ} be a hereditary class on R. It is clear that the countable
µ-open cover {(−n, n) : n ∈ N} of R has no a finite subcover, so (R, µ,H)
is not a µ-countably compact space. Now, let {uµα : α ∈ ∆} be a countable
µ-open cover of R then it is obvious that if we pick uµα◦

for any α◦ ∈ ∆, we get
R \ uµα◦

∈ H which means (R, µ,H) is µH-countably compact.

The relation between µ-countably compact spaces and µHf -countably com-
pact spaces can be expressed as follows.



µ-COUNTABLY COMPACTNESS AND µH-COUNTABLY COMPACTNESS 271

Theorem 2.2. Let Hf be the set of all finite subsets of a nonempty set X and
µ be a generalized topology on X. The (X,µ) is a µ-countably compact space
if and only if (X,µ,Hf ) is a µHf -countably compact space.

Proof. The first direction is direct. To prove the second direction, let (X,µ,Hf )
be a µHf -countably compact space and {uµα : α ∈ ∆} be a countable µ-open
cover of X. From the assumption, there is a finite subset Λ of ∆ such that
X \

⋃
{uµα : α ∈ Λ} ∈ Hf . So, X \

⋃
{uµα : α ∈ Λ} = {x1, x2, . . . , xn}. Without

loss of generality and for each xi, 1 ≤ xi ≤ n, choose uµαi
such that xi ∈

uµαi
.Thus, X = (

⋃
α∈Λ

uµα) ∪ (
n⋃
i=1

uµαi
) and so (X,µ) is a µ-countably compact

space. �

The proof of these theorems are straightforward and thus omitted.

Theorem 2.3. Let (X,µ) be a µ-countably compact space. If A is a µ-closed
subset of X, then A is µ-countably compact.

Theorem 2.4. Let (X,µ,H) be a µH-countably compact space. If A is a µ-
closed subset of X, then A is µH-countably compact.

The next theorem is crucial for our considerations.

Theorem 2.5. A GTS (X,µ) is a µ-countably compact space if and only if for
any countable family {Fα : α ∈ ∆} of µ-closed subsets of X having the property
that

⋂
{Fα : α ∈ Λ}6=φ for every finite subset Λ of ∆, then

⋂
{Fα : α ∈ ∆} 6= φ.

An interesting characterization of µH-countably compact spaces can be de-
termined by the following theorem.

Theorem 2.6. A HGTS (X,µ,H) is a µH-countably compact space if and
only if for any countable family {Fα : α ∈ ∆} of µ-closed subsets of X having
the property that

⋂
{Fα : α ∈ Λ} /∈ H for every finite subset Λ of ∆, then⋂

{Fα : α ∈ ∆} 6= φ.

Proof. Assume that (X,µ,H) is a µH-countably compact space and {Fα : α ∈
∆} is a countable family of µ-closed subsets of X having the property that⋂
{Fα : α ∈ Λ} /∈ H for every subset Λ of ∆. Now, if

⋂
{Fα : α ∈ ∆} = φ,

then {X \ Fα : α ∈ ∆} is a countable µ-open cover of X. Since (X,µ,H)
is a µH-countably compact space, there is a finite subset Λ of ∆ such that
X \

⋃
{X \ Fα : α ∈ Λ} ∈ H and so

⋂
{Fα : α ∈ Λ} ∈ H which contradicts

the assumption. Thus
⋂
{Fα : α ∈ ∆} 6= φ. Conversely, let {uµα : α ∈ ∆}

be a countable µ-open cover of X. Assume that for any finite subset Λ of ∆,
we have X \

⋃
{uµα : α ∈ Λ} /∈ H, which means that {X \ uµα : α ∈ Λ} is a

countable family of µ-closed subsets of X where
⋂
{X \ uµα : α ∈ Λ} /∈ H, and

by the assumption
⋂
{X \ uµα : α ∈ ∆} 6= φ, this is contradiction to the fact

that {uµα : α ∈ ∆} is a cover of X. Thus (X,µ,H) is a µH-countably compact
space. �
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The proof of the following theorem is similar to the above theorem and thus
omitted.

Theorem 2.7. Let (X,µ,H) be a HGTS. A subset A of X is a µH-countably
compact set if and only if for any countable family {Fα : α ∈ ∆} of µ-closed
subsets of X having the property that (

⋂
{Fα : α ∈ Λ})∩A /∈ H for every finite

subset Λ of ∆, then (
⋂
{Fα : α ∈ ∆}) ∩A 6= φ.

The next definition of θµ-accumulation point can be used to get more results
in this research.

Definition ([13]). Let (X,µ) be a GTS and A be a subset of X. A point x ∈ X
is called a θµ-accumulation point of A if cµ(uµ)∩A 6= φ for every µ-open subset
uµ of X that contains x. The set of all θµ-accumulation points of A is called
the θµ-closure of A and its denoted by (cµ)θ(A). Moreover, A is said to be
µθ-closed if (cµ)θ(A) = A. The complement of a µθ-closed is called µθ-open.

It is observed that, if x ∈ X is an accumulation (limit) point of A ⊆ X,
then x is a θµ-accumulation point of A. Also, since (cµ)θ(A) is the set of all θµ-
accumulation points of A and uµ ⊆ cµ(uµ), we deduce that cµ(A) ⊆ (cµ)θ(A)
for any A ⊆ X.

Lemma 2.8 ([13]). Let (X,µ) be a GTS. A subset A of X is µθ-open if and only
if for each x ∈ A, there exists a µ-open set uµ such that x ∈ uµ ⊆ cµ(uµ) ⊆ A.

Proof. Let A be a µθ-open subset of X and x ∈ A. That means, A is a µθ-
closed. So, there is uµ ∈ µ and x ∈ uµ such that cµ(uµ)∩A = φ. Thus,
x ∈ uµ ⊆ cµ(uµ) ⊆ A. Conversely, let x /∈ (X \A). That means, x ∈ A, and by
the assumption there is uµ ∈ µ and x ∈ uµ such that x ∈ uµ ⊆ cµ(uµ) ⊆ A. So,
cµ(uµ)∩(X \A) = φ. From the definition of θµ-closure, we get x /∈ (cµ)θ(X \A).
Thus, (cµ)θ(X \ A) ⊆ X \ A. This gives the fact that, X \ A is µθ-closed and
so A is µθ-open. �

Theorem 2.9. If a HGTS (X,µ,H) is a µH-countably compact space, then
for every countable cover of µθ-open sets {uµ : α ∈ ∆} of X there is a finite
subset Λ of ∆ such that X \

⋃
{uµ : α ∈ Λ} ∈ H.

Proof. Assume that (X,µ,H) is a µH-countably compact space and {uµ : α ∈
∆} is a countable cover of X by µθ-open sets. Then for each x ∈ X, there is αx
∈ ∆ such that x ∈ uµαx

. Applying Lemma 2.8, there is a µ-open set vµαx
such

that x ∈ vµαx
⊆ cµ(vµαx

) ⊆ uµαx
. Since vµαx

depends on uµαx
for every αx ∈ ∆,

then the family {vµαx
: x ∈ X} is a countable cover of X by µ-open sets. From

the assumption, the space (X,µ,H) is a µH-countably compact space and so
there is a finite subset Λ of ∆ such thatX\

⋃
{vµαx

: αx ∈ Λ} ∈ H. So, vµαx
⊆ uµαx

for every αx ∈ Λ which means that X \
⋃
{uµαx

: αx ∈ Λ} ⊆ X \
⋃
{vµαx

: αx ∈
Λ} ∈ H. Since, H is a hereditary class, we get X \

⋃
{uµαx

: αx ∈ Λ} ∈ H and
this completes the proof. �



µ-COUNTABLY COMPACTNESS AND µH-COUNTABLY COMPACTNESS 273

Theorem 2.10. If a GTS (X,µ) is a µ-countably compact space, then for every
countable cover of µθ-open sets {uµα : α ∈ ∆} of X there is a finite subcover.

Theorem 2.11. Let (X,µ,H) be a µH-countably compact space. If A is a
µθ-closed subset of X, then A is µH-countably compact.

In the following theorems we see that, if one of the spaces (X,µ,H) and
(X,µ∗,H) is countably compact in the sense of µ and µ∗ respectively, then the
other one is countably compact.

Corollary 2.12. If a HGTS (X,µ∗,H) is a µ∗H-countably compact space,
then (X,µ,H) is µH-countably compact.

Proof. Let {Fα : α ∈ ∆} be a family of µ-closed subsets of X such that
⋂
{Fα :

α ∈ ∆} = φ. Since A∗ ⊆ c∗µ(A), we deduce that {Fα : α ∈ ∆} is a countable
family of µ∗-closed sets. From the assumption and by using contrapositive in
Theorem 2.6 there is a finite subset Λ of ∆ such that

⋂
{Fα : α ∈ Λ} ∈ H

which means that (X,µ,H) is µH-countably compact. �

By following the same technique of the proof of Corollary 2.12 and applying
Theorem 2.5, we get the following result.

Corollary 2.13. If a GTS (X,µ∗) is a µ∗-countably compact space, then (X,µ)
is µ-countably compact.

Theorem 2.14. Let a HGTS (X,µ,H) be a µH-countably compact space and
the hereditary class H is an ideal. Then the space (X,µ∗,H) is µ∗H-countably
compact.

Proof. Let {uµ∗

α : α ∈ ∆} be a countable µ∗-covering of X. So for an arbitrary
element x ∈ X, there is a µ∗-open subset uµ

∗

αx
∈ µ∗ such that x ∈ uµ∗

αx
. By the

definition of µ∗, there is such vµαx
∈ µ such that x ∈ vµαx

and vµαx
∩(X\uµ∗

αx
) ∈ H.

Setting Rαx
= vµαx

∩ (X \uµ∗

αx
) we get vµαx

∩ (X \Rαx
) = vµαx

∩
(
X \

(
vµαx
∩ (X \

uµ
∗

αx
)
))

= vµαx
∩ uµ∗

αx
⊆ uµ

∗

αx
. Since the family {vµαx

: αx ∈ ∆} is a countable µ-

covering of X and (X,µ,H) is µH-countably compact, there is a finite subset Λ
of ∆ such that (X\

⋃
{vµαx

: αx ∈ Λ}) ∈ H. From the fact that, vµαx
∩(X\Rαx

) ⊆
uµ

∗

αx
, we get X \ uµ

∗

αx
⊆ (X \ vµαx

) ∪ Rαx . So, (X \
⋃{

uµ
∗

αx
: αx ∈ Λ

}
) ⊆ (X \⋃{

vµαx
: αx ∈ Λ

}
)∪ (

⋃
{Rαx

: αx ∈ Λ}). Since H is closed under finite union

and Rαx
∈ H, we have (X \

⋃{
vµαx

: αx ∈ Λ
}

) ∪ (
⋃
{Rαx

: αx ∈ Λ}) ∈ H.

Since H is a hereditary class, we get (X \
⋃{

uµ
∗

αx
: αx ∈ Λ

}
) ∈ H. That means

(X,µ∗,H) is µ∗H-countably compact.
�

The following example shows that the closedness under finite union of a
given hereditary class H is a necessary condition in the above theorem.
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Example 2.15. Let µ={A ⊆ R : A is infinite set} ∪ {φ} be a generalized
topology on R andH ={A ⊆ R : R\A ∈ µ} be a hereditary class on R. It is clear
thatH is not an ideal and so it is not closed under finite union. Let {uµα : α ∈ ∆}
be a countable µ-open cover of R. For any finite subfamily {uµα : α ∈ ∆◦ ⊆ ∆},
we get (X \

⋃
{uµα : α ∈ ∆◦}) ∈ H. So (R, µ,H) is µH-countably compact.

Moreover, for any n ∈ N, we have (R \ (−n, n))∗ ⊆ (R \ (−n, n)) and so
{(−n, n) : n ∈ N} is a countable µ∗-covering of R. Now, if there is a finite index
set ∆′ ⊆ N, then (R\

⋃
{(−n, n) : n ∈ ∆′}) =

(
R\−(max{n : n ∈ ∆′},max{n :

n ∈ ∆′})
)

which is an infinite set. That means (R \
⋃
{(−n, n) : n ∈ ∆′}) /∈ H.

Thus (R, µ,H) is not a µ∗H-countably compact space.

Theorem 2.16. Let (X,µ) be a GTS and H be an ideal on X. Then the union
of any two µH-countably compact sets of X is µH-countably compact.

Proof. Let A and B be two µH-countably compact sets of X and {uµα : α ∈ ∆}
be any countable µ-covering of A∪B. Since A and B are µH-countably compact
sets of X, then there are two finite subfamilies {uµα : α ∈ ∆1 ⊆ ∆} and
{uµα : α ∈ ∆2 ⊆ ∆} such that (A \

⋃
{uµα : α ∈ ∆1}) ∈ H and (B \

⋃
{uµα :

α ∈ ∆2}) ∈ H. Setting Λ = ∆1 ∪∆2 and since
(

(A ∪ B) \
⋃
{uµα : α ∈ Λ}

)
⊆(

A \
⋃
{uµα : α ∈ ∆1}

)
∪
(
B \

⋃
{uµα : α ∈ ∆2})

)
and H is an ideal with the

fact that A
⋃
B is finite, we get

(
(A ∪B) \

⋃
{uµα : α ∈ Λ}

)
∈ H. That means

A ∪B is µH-countably compact. �

The proof of the following theorem is straightforward and thus omitted.

Theorem 2.17. Let (X,µ) be a GTS. Then the union of any two µ-countably
compact sets of X is µ-countably compact.

Theorem 2.18. Let (X,µ,H1∩H2) be a µ(H1∩H2)-countably compact space
for given two hereditary classes H1 and H2. Then (X,µ,H1) is a µH1-countably
compact space and (X,µ,H2) is a µH2-countably compact space.

The proof is straightforward if we take in account that the intersection of
any two hereditary classes of a set is again a hereditary class of that set.

3. Functions on µ-countably compact and µH-countably
compact spaces

We study the effect of functions in the sense of generalized topologies on
µ-countably compact spaces and µH-countably compact spaces.

Definition ([12]). Let (X,µ1) and (Y, µ2) be two GTSs. Then a function
f : (X,µ1) −→ (Y, µ2) is said to be (µ1, µ2)-continuous if for every V ∈ µ2

then f−1(V ) ∈ µ1.

Definition ([11]). Let (X,µ1) and (Y, µ2) be two GTSs. Then a function
f : (X,µ1) −→ (Y, µ2) is said to be (µ1, µ2)-open if for every U ∈ µ1, then
f(U) ∈ µ2.
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The proof of the following theorem is straightforward and thus omitted.

Theorem 3.1. Let f : (X,µ1) −→ (Y, µ2) be a (µ1, µ2)-continuous surjection
function. If (X,µ1) is a µ1-countably compact space, then (Y, µ2) is a µ2-
countably compact space.

Theorem 3.2. Let (X,µ1,H) be a HGTS and (Y, µ2) be a GTS. If

f : (X,µ1,H) −→ (Y, µ2)

is a function, then f(H) = {f(A) : A ∈ H} is a hereditary class of Y .

The following corollary is a direct result from Theorem 3.2.

Corollary 3.3. Let f : (X,µ1,H) −→ (Y, µ2) be a (µ1, µ2)-continuous surjec-
tion function. If (X,µ1,H) is a µ1H-countably compact space, then

(Y, µ2, f(H))

is µ2f(H)-countably compact.

Corollary 3.4. Let f : (X,µ1,H) −→ (Y, µ2) be a (µ1, µ2)-continuous surjec-
tion function. If Y is a finite space and (X,µ1,H) is a µ1H-countably compact
space, then (Y, µ2) is a µ2-countably compact space.

Proof. By the assumption and from Corollary 3.3, (Y, µ2, f(H)) is a µ2f(H)-
countably compact space. Since Y is finite, the class f(H) is of finite subsets
and apply Theorem 2.2 to get (Y, µ2) is a µ2-countably compact space. �

As a reverse work of Corollary 1.28, we get this result via a (µ1, µ2)-open
bijection.

Corollary 3.5. Let f : (X,µ1) −→ (Y, µ2,H) be a (µ1, µ2)-open bijection. If
(Y, µ2,H) is a µ2H-countably compact space, then

(X,µ1, f
−1(H))

is a µ1f
−1(H)-countably compact space.

Proof. From the assumption, we get f−1 : (Y, µ2,H) −→ (X,µ1) is a (µ2, µ1)-
continuous surjection. Since (Y, µ2,H) is a µ2H-countably compact space,
by applying Corollary 3.4, we get the space (X,µ1, f

−1(H)) is a µ1f
−1(H)-

countably compact space. �

4. Conclusions

We have introduced the notion of µ-countably compact spaces and µH-
countably compact spaces in the sense of generalized topology given in [4] and
the notion of hereditary class H. An example of a µH-countably compact
space which is not µ-countably compact is presented. Also, it is proved that
these notions preserve hereditary property under µ-closedness. And interesting
characterizations of µ-countably compact space and µH-countably compact
space are given in Theorems 2.5 and 2.6. Moreover, some other interesting
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results are given by using µθ-accumulation points [13]. In Section 3 of the
paper, some preservations of function properties are studied and investigated.

As a future work, it is expected to extend our work to introduce more gen-
eralizations of countably compact spaces as in [1,2] in the sense of generalized
topology and hereditary classes, or by replacing generalized topology by weaker
framework as weaker structures WS [7]. Although WS spaces are not closed
under arbitrary union, some modifications can be made to get interesting and
even analogous results obtained in this paper. In addition, the construction
arising from a generalized topology and a hereditary class H remains valid, if
the generalized topology µ is replaced by weaker structures WS as it is pre-
sented in [14]. In conclusion, this paper can be used to furnish more research
in different paths of generalizations of µ-countably compactness via hereditary
classes in future.

Acknowledgement. The authors would like to thank the referees for their
valuable comments and suggestions to improve this paper.
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