Acknowledgement
This work was financially supported by National Natural Science Foundation of China (No. 11871096 and 11471033).
References
- H. M. Al-Qassem, L. Cheng, and Y. Pan, Rough oscillatory singular integrals on ℝn, Studia Math. 221 (2014), no. 3, 249-267. https://doi.org/10.4064/sm221-3-4
- S. M. Buckley, Estimates for operator norms on weighted spaces and reverse Jensen inequalities, Trans. Amer. Math. Soc. 340 (1993), no. 1, 253-272. https://doi.org/10.2307/2154555
- J. M. Conde-Alonso, A. Culiuc, F. Di Plinio, and Y. Ou, A sparse domination principle for rough singular integrals, Anal. PDE 10 (2017), no. 5, 1255-1284. https://doi.org/10.2140/apde.2017.10.1255
- D. Fan and Y. Pan, Singular integral operators with rough kernels supported by subvarieties, Amer. J. Math. 119 (1997), no. 4, 799-839. https://doi.org/10.1353/ajm.1997.0024
- N. Fujii, Weighted bounded mean oscillation and singular integrals, Math. Japon. 22 (1977/78), no. 5, 529-534.
- T. Hytonen and C. Perez, Sharp weighted bounds involving A∞, Anal. PDE 6 (2013), no. 4, 777-818. https://doi.org/10.2140/apde.2013.6.777
- T. P. Hytonen, L. Roncal, and O. Tapiola, Quantitative weighted estimates for rough homogeneous singular integrals, Israel J. Math. 218 (2017), no. 1, 133-164. https://doi.org/10.1007/s11856-017-1462-6
- B. Krause and M. T. Lacey, Sparse bounds for maximally truncated oscillatory singular integrals, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 20 (2020), no. 2, 415-435.
- M. T. Lacey, An elementary proof of the A2 bound, Israel J. Math. 217 (2017), no. 1, 181-195. https://doi.org/10.1007/s11856-017-1442-x
- A. K. Lerner, A note on weighted bounds for rough singular integrals, C. R. Math. Acad. Sci. Paris 356 (2018), no. 1, 77-80. https://doi.org/10.1016/j.crma.2017.11.016
- K. Li, C. Perez, I. P. Rivera-Rios, and L. Roncal, Weighted norm inequalities for rough singular integral operators, J. Geom. Anal. 29 (2019), no. 3, 2526-2564. https://doi.org/10.1007/s12220-018-0085-4
- S. Z. Lu and Y. Zhang, Criterion on Lp-boundedness for a class of oscillatory singular integrals with rough kernels, Rev. Mat. Iberoamericana 8 (1992), no. 2, 201-219.
- H. Ojanen, Weighted estimates for rough oscillatory singular integrals, J. Fourier Anal. Appl. 6 (2000), no. 4, 427-436. https://doi.org/10.1007/BF02510147
- F. Di Plinio, T. P. Hytonen, and K. Li, Sparse bounds for maximal rough singular integrals via the Fourier transform, Ann. Inst. Fourier (Grenoble) 70 (2020), no. 5, 1871-1902.
- F. Ricci and E. M. Stein, Harmonic analysis on nilpotent groups and singular integrals. I. Oscillatory integrals, J. Funct. Anal. 73 (1987), no. 1, 179-194. https://doi.org/10.1016/0022-1236(87)90064-4
- E. M. Stein and G. Weiss, Interpolation of operators with change of measures, Trans. Amer. Math. Soc. 87 (1958), 159-172. https://doi.org/10.2307/1993094
- J. M. Wilson, Weighted inequalities for the dyadic square function without dyadic A∞, Duke Math. J. 55 (1987), no. 1, 19-50. https://doi.org/10.1215/S0012-7094-87-05502-5
- H. Wu, Boundedness of higher order commutators of oscillatory singular integrals with rough kernels, Studia Math. 167 (2005), no. 1, 29-43. https://doi.org/10.4064/sm167-1-3