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QUANTITATIVE WEIGHTED ESTIMATES

FOR OSCILLATORY SINGULAR INTEGRALS

WITH ROUGH KERNELS

Yanping Chen and Wenyu Tao

Abstract. In this paper, we obtain the quantitative weighted bounds of
oscillatory singular integral with rough kernel. Moreover, the quantitative

weighted bounds of maximally truncated oscillatory singular integral with

rough kernel are also obtained.

1. Introduction

The following form of oscillatory singular integrals with standard Calderón-
Zygmund kernel had been studied by F. Ricci and E. M. Stein in [15]:

TP f(x) = p.v.

∫
Rn
eiP (x,y) Ω(x− y)

|x− y|n
f(y)dy,(1)

where Ω ∈ C1(Sn−1) is homogeneous of degree zero and has mean value zero on
the unit sphere Sn−1, and P : Rn ×Rn → R is a real valued polynomial of two
variables. As well-known, the operators of type (1) have arisen in the study
of singular integrals on lower-dimensional varieties and the singular Radon
transform, one can see [1, 4, 13,18] and references therein. Ricci and Stein [15]
proved that the operator TP is bounded on Lp(Rn) for all 1 < p <∞ provided
that Ω ∈ C1(Sn−1). Later on, the condition Ω ∈ C1(Sn−1) was relaxed to
Ω ∈ Lq(Sn−1) for some q > 1 by Lu and Zhang [12]. This paper will be
devoted to discussing a class of oscillatory singular integrals with rough kernel,
which is not necessary to be a standard Calderón-Zygmund kernel.

Before we give the main results, let’s review some variants of the weight
characteristic. For 1 < p < ∞, we say that w ∈ Ap if there exists a constant
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C > 0 such that

[w]Ap := sup
Q

(
1

|Q|

∫
Q

w(x)dx

)(
1

|Q|

∫
Q

w(x)1−p′dx

)p−1

≤ C,(2)

where p′ = p
p−1 . The definition for the A∞ constant of a weight w was intro-

duced by N. Fujii [5] and J. M. Wilson [17]:

[w]A∞ := sup
Q

1

w(Q)

∫
Q

M(1Qw)(x)dx.

Here, w(Q) :=
∫
Q
w(x)dx, 1Qw(x) = w(x)1Q(x), where 1Q is the characteristic

function of Q, and the supremum above is taken over all cubes with edges
parallel to the coordinate axes. When the supremum is finite, we will say
that w belongs to the A∞ class. In order to state the weighted estimates in
this paper more effectively, we introduce the following variants of the weight
characteristic:

{w}Ap := [w]
1/p
Ap

max{[w]
1/p′

A∞
, [w1−p′ ]

1/p
A∞
},

(w)Ap := max{[w]A∞ , [w
1−p′ ]A∞}.

Recently, with the development of the key tool sparse domination (pointwise
version originated in [9]), the quantitative weighted bounds for singular inte-
grals with rough kernels have been studied intensively (see [3, 7, 11]). Among
these quantitative weighted bounds for TΩ which is defined by

TΩf(x) = p.v.

∫
Rn

Ω(x− y)

|x− y|n
f(y)dy,

we would like to highlight that Hytönen–Roncal–Tapiola [7] first proved that
when Ω ∈ L∞(Sn−1),

‖TΩ‖Lp(w)→Lp(w) ≤ cn,p‖Ω‖L∞{w}Ap(w)Ap .(3)

Later, Conde-Alonso–Culiuc–Di Plinio–Ou [3] proved a sparse domination for
the bilinear forms associated with TΩ with Ω ∈ Lq(Sn−1) for 1 < q ≤ ∞
satisfying the cancellation conditions, which leads to quantitative weighted
bounds for TΩ.

Moreover, Lu-Zhang [12] established a simple criterion on Lp boundedness
of the rough oscillatory singular integral operator, and developed a general
method for studying the Lp boundedness of oscillating singular integrals. In
this paper, we will extend the criteria to the weighted background, and then
use their method to analyze the weighted boundedness of oscillatory singular
integral and maximally truncated oscillatory singular integral with rough ker-
nel. Our first aim is to focus on the behavior of the quantitative weighted
bound for a class of oscillatory singular integrals with rough kernel.
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Theorem 1.1. Suppose P (x, y) is a real valued polynomial. Let Ω be homo-
geneous of degree zero, have mean value zero and Ω ∈ L∞(Sn−1). Then for
1 < p <∞ and w ∈ Ap, the operator TP satisfies

‖TP f‖Lp(w) ≤ C‖Ω‖L∞{w}Ap(w)Ap‖f‖Lp(w),(4)

where C depends only on the total degree of P (x, y), but not on the coefficients
of P (x, y).

In the last ten years, (3) was also extended to maximal singular integrals T ∗Ω
which is defined by

T ∗Ωf(x) = sup
ε>0

∣∣∣∣ ∫
|x−y|>ε

Ω(x− y)

|x− y|n
f(y)dy

∣∣∣∣
in Di Plinio, Hytönen and Li [14] and Lerner [10] via sparse domination, which
gives

‖T ∗Ω‖L2(w)→L2(w) ≤ cn‖Ω‖L∞ [w]2A2
.(5)

The second result of this paper is to focus on the quantitative weighted bound
of maximal truncation of oscillatory singular integrals T ∗p with

T ∗P f(x) = sup
ε>0

∣∣∣∣ ∫
|x−y|>ε

eiP (x,y) Ω(x− y)

|x− y|n
f(y)dy

∣∣∣∣.
Note that B. Krause and M. T. Lacey proved the quantitative weighted bounds
for maximally truncated oscillatory singular integral with Ω ∈ C1(Sn−1) in
[8, Corollary 1.3] as follows:

‖T ∗P ‖Lp(w)→Lp(w) ≤ C[w]
1+max{ 1

p−1 ,1}
Ap

.

We shall get a similar result for the maximal truncation T ∗P with Ω ∈
L∞(Sn−1).

Theorem 1.2. Suppose P (x, y) is a real valued polynomial. Let Ω be homo-
geneous of degree zero, have mean value zero and Ω ∈ L∞(Sn−1). Then for
1 < p <∞ and w ∈ Ap, the operator T ∗P satisfies

‖T ∗P f‖Lp(w) ≤ C{w}Ap(w)Ap‖f‖Lp(w),(6)

where C depends only on the total degree of P (x, y), but not on the coefficients
of P (x, y).

Remark 1.3. Note that C1(Sn−1) ⊂ L∞(Sn−1), Theorem 1.2 can be regarded
as an extension of [8, Corollary 1.3]. In [8], authors mainly studied the sparse
form for oscillatory singular integral with Calderón-Zygmund kernel. However,
the rough kernel studied in Theorems 1.1 and 1.2 does not belong to the above
kernel, the sparse method for Calderón-Zygmund kernel fails. We used the ex-
isting conclusion that quantitative weighted bounds for singular integrals with
rough kernels in [7] and the general method for studying the Lp boundedness of
oscillating singular integrals in [12] to prove the main theorems in this paper.
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This paper is organized as follows. In Section 2, we give some notation and
lemmas, we will establish an quantitative weighted estimate for truncated os-
cillatory singular integrals with rough kernel. The proofs of our main theorems
are given in Section 3.

Notation. Throughout the whole paper, p′ = p/(p − 1) represents the con-
jugate index of p ∈ [1,∞); X . Y stands for X ≤ CY for a constant C > 0
which is independent of the essential variables living on X & Y ; and X ≈ Y
denotes X . Y . X.

2. Some lemmas

First, we state several lemmas which play an important role in the proofs
of Theorems 1.1 and 1.2. The following interpolation theorem with change of
measures was presented by E. M. Stein and G. Weiss in [16, Theorem 2.11].

Lemma 2.1 ([16]). Assume that 1 ≤ p0, p1 ≤ ∞, that w0 and w1 are positive
weights, and that T is a sublinear operator satisfying

T : Lpi(wi)→ Lpi(wi), i = 0, 1,

with quasi-norms M0 and M1, respectively. Then

T : Lp(w)→ Lp(w),

with quasi-norm M ≤Mλ
0 M

1−λ
1 , where

1

p
=

λ

p0
+

1− λ
p1

, w = w
pλ/p0
0 w

p(1−λ)/p1
1 .

Lemma 2.2. Suppose Ω is homogeneous of degree zero on Sn−1, and Ω(x′) ∈
L∞(Sn−1). If

Tf(x) = p.v.

∫
Rn
K(x, y)f(y)dy

satisfies

‖Tf‖Lp(w) . ‖T‖Lp(w)→Lp(w)‖f‖Lp(w)

for 1 < p < +∞ and w ∈ Ap. Also K(x, y) satisfies

|K(x, y)| . |Ω(x− y)|
|x− y|n

.

Then the operators

Tεf(x) =

∫
|x−y|<ε

K(x, y)f(y)dy

satisfy

‖Tε‖Lp(w)→Lp(w) . C(‖T‖Lp(w)→Lp(w) + ‖Ω‖L∞{w}Ap),

where C is independent of T, ε and w.
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Proof. We split f into three parts f(y) = f1(y) + f2(y) + f3(y) for h ∈ Rn.
Here

f1(y) = f(y)χ{|y−h|<ε/2}(y),

f2(y) = f(y)χ{ε/2≤|y−h|<5ε/4}(y),

f3(y) = f(y)χ{|y−h|≥5ε/4}(y).

When |x− h| < ε/4, it is easy to see Tεf1(x) = Tf1(x). Then we have∫
|x−h|<ε/4

|Tεf1(x)|pw(x)dx .
∫
Rn
|Tf1(x)|pw(x)dx(7)

. ‖T‖pLp(w)→Lp(w)

∫
|y−h|<ε/2

|f(y)|pw(y)dy.

If |x−h| < ε/4, ε/2 ≤ |y−h| < 5ε/4, then ε/4 < |x−y| < 3ε/2. So we have

|Tεf2(x)| ≤
∫
ε/4<|y|≤ε

|Ω(y′)|
|y|n

|f2(x− y)|dy . ‖Ω‖L∞Mf2(x).

Then by the sharp weighted boundedness of the Hardy–Littlewood maximal
operator M (see Hytönen–Pérez [6, Corollary 1.10], the original version was
due to Buckley [2]),

‖Mf‖Lp(w) ≤ cn · p′ · [w]
1
p

Ap
[w1−p′ ]

1
p

A∞
‖f‖Lp(w), 1 < p <∞,(8)

it follows that (∫
|x−h|<ε/4

|Tεf2(x)|pw(x)dx

)1/p

(9)

. ‖Ω‖L∞
(∫
|x−h|<ε/4

|Mf2(x)|pw(x)dx

)1/p

. ‖Ω‖L∞{w}Ap
(∫

Rn
|f2(x)|pw(x) dx

)1/p

' ‖Ω‖L∞{w}Ap
(∫
|y−h|<5ε/4

|f(y)|pw(y)dy

)1/p

.

If |x− h| < ε/4, |y − h| ≥ 5/4, then |x− y| > ε. So we have

Tεf3(x) = 0.(10)

From (7), (9) and (10) it follows that the estimate∫
|x−h|<ε/4

|Tεf(x)|pw(x)dx ≤ C(‖T‖Lp(w)→Lp(w) + ‖Ω‖L∞{w}Ap)p

×
∫
|y−h|<5ε/4

|f(y)|pw(y)dy
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holds uniformly in h ∈ Rn. The above estimates imply

‖Tεf‖Lp(w) ≤ C(‖T‖Lp(w)→Lp(w) + ‖Ω‖L∞{w}Ap)‖f‖Lp(w). �

3. Proofs of the main theorems

3.1. Proof of Theorem 1.1

We shall carry out the argument by a double induction on the degrees in x
and y of the polynomial P as follows. We assume the theorem is known for
all polynomials which are sums of monomials degree less than k in x times
monomials of any degree in y, together with monomials which are of degree k
in x times monomials which are of degree less than l in y. Our inductive step
will be to add to this all the monomials which have degree k in x and degree l
in y.

Specifically, if the theorem for the polynomials which are sums of monomials
degree equal to k in x times monomials of degree equal to l in y is true, then
from the assumption for all polynomials which are sums of monomials degree
equal to k in x times monomials of degree less than l in y, by double induction
we can get the theorem for the polynomials which are sums of monomials degree
equal to k in x times monomials of any degree in y. Combining with the above
result, the assumption for all polynomials which are sums of monomials degree
less than k in x times monomials of any degree in y and the known theorem
for the polynomials which are sums of monomials degree equal to 0 in y times
monomials of any degree in x (see [7] and [11]), by double induction we have
the theorem for all polynomials which are sums of monomials of any degree
in x times monomials of any degree in y is finished. Thus, in order to prove
Theorem 1.1, we only need to prove the theorem for the polynomials which are
sums of monomials degree equal to k in x times monomials of degree equal to
l in y.

For general P (x, y), we may write

P (x, y) =
∑
|α|=k
|β|=l

aαβx
αyβ +R0(x, y),

where R0(x, y) satisfies the above induction assumption.
Without loss of generality, we may assume

∑
|α|=k
|β|=l

|aαβ | > 0.

Case 1.
∑
|α|=k
|β|=l

|aαβ | = 1.

We write

TP f(x) =

∫
|x−y|≤1

eiP (x,y) Ω(x− y)

|x− y|n
f(y)dy +

∫
|x−y|>1

eiP (x,y) Ω(x− y)

|x− y|n
f(y)dy

=: T0f(x) + T∞f(x).
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Take h ∈ Rn, and write

P (x, y) =
∑
|α|=k
|β|=l

aαβ(x− h)α(y − h)β +R(x, y, h),

where the polynomial R(x, y, h) satisfies the induction assumption, and the
coefficients of R(x, y, h) depend on h. Namely,

T̃ f(x) =p.v.

∫
Rn
eiR(x,y,h) Ω(x− y)

|x− y|n
f(y)dy

satisfies

‖T̃ f‖Lp(w) . {w}Ap(w)Ap‖f‖Lp(w).(11)

We have

|T0f(x)| ≤
∣∣∣∣ ∫
|x−y|≤1

exp
{
i[R(x, y, h) +

∑
|α|=k

aαβ(y − h)α+β ]
}Ω(x− y)

|x− y|n
f(y)dy

∣∣∣∣
+

∣∣∣∣ ∫
|x−y|≤1

{
exp(iP (x, y)− exp(i[R(x, y, h)

+
∑
|α|=k

aαβ(y − h)α+β ])
}Ω(x− y)

|x− y|n
f(y)dy

∣∣∣∣
=: |T01f(x)|+ |T02f(x)|.

For T01. Denote by,

Thf(x) := p.v.

∫
Rn

exp
{
i
∑
|α|=k

aαβ(y − h)α+β ]
}Ω(x− y)

|x− y|n
f(y)dy

= p.v.

∫
Rn

Ω(x− y)

|x− y|n
gh(y)dy,

where gh(y) = exp
{
i
∑
|α|=k aαβ(y − h)α+β ]

}
f(y). Then by (3), we get

‖Thf‖Lp(w) . ‖Ω‖L∞{w}Ap(w)Ap‖gh‖Lp(w)(12)

. ‖Ω‖L∞{w}Ap(w)Ap‖f‖Lp(w).

From the induction assumption (11), (12) and Lemma 2.2 we obtain that

‖T01f‖Lp(w) . ‖Ω‖L∞{w}Ap(w)Ap‖f‖Lp(w).(13)

For T02, when |x− h| < 1/4, |x− y| < 1, we have∣∣ exp{iP (x, y)} − exp
{
i
[
R(x, y, h) +

∑
|α|=k
|β|=l

aαβ(y − h)α+β
]}∣∣

.
∑
|α|=k
|β|=l

∣∣aαβ∣∣|x− y| . |x− y|.
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Thus

|T02f(x)| .
∫
|x−y|≤1

|Ω(x− y)|
|x− y|n−1

|f(y)|dy

=
∑
k≤0

∫
2k−1<|x−y|≤2k

|Ω(x− y)|
|x− y|n−1

|f(y)χB(h,5/4)|dy

. ‖Ω‖L∞
∑
k≤0

2kMfχB(h,5/4)(x)

. ‖Ω‖L∞MfχB(h,5/4)(x).

Then combining with (8), we get∫
|x−h|<1/4

|T02f(x)|pw(x)dx . ‖Ω‖L∞{w}Ap
∫
|y−h|<5/4

|f(y)|pw(y)dy.

Thus

‖T02f‖Lp(w) . ‖Ω‖L∞{w}Ap‖f‖Lp(w).(14)

Combining (13) and (14), we get

‖T0f‖Lp(w) . ‖Ω‖L∞{w}Ap(w)Ap‖f‖Lp(w).(15)

We write

T∞f(x) =

+∞∑
j=1

∫
2j−1<|x−y|≤2j

eiP (x,y) Ω(x− y)

|x− y|n
f(y)dy =

+∞∑
j=1

Tjf(x).

We take δ ∈ (0, 1], such that δ < min{k/l, 2k/((k + l)q′)}. From [12, (2.7)],
we get

‖Tjf‖Lp . ‖Ω‖L∞2−jδ/2‖f‖Lp .(16)

On the other hand,

|Tjf(x)| . ‖Ω‖L∞Mf(x).(17)

Thus by (8)

‖Tjf‖Lp(w) . ‖Ω‖L∞{w}Ap‖f‖Lp(w).(18)

Further, let cn be a small positive constant and denote ε := 1
2cn/(w)Ap ,

{w1+ε}Ap ≤ cn{w}
(1+ε)
Ap

(see [7, Corollary 3.18]). By (18), we have

‖Tjf‖Lp(w1+ε) . ‖Ω‖L∞{w1+ε}Ap‖f‖Lp(w1+ε)(19)

. ‖Ω‖L∞{w}(1+ε)
Ap

‖f‖Lp(w1+ε).

We apply Lemma 2.1 to T = Tj with p0 = p1 = p, w0 = w0 = 1 and w1 = w1+ε,
so that by λ = ε/(1 + ε), (16) and (19), we have for some θ, γ > 0 such that

‖Tj‖Lp(w)→Lp(w) . ‖Ω‖L∞2−θjε/(1+ε){w}Ap . ‖Ω‖L∞2
−γj/(w)Ap{w}Ap .
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Then use
∞∑
j=1

2
−γj/(w)Ap .

( ∑
j:j≤(w)Ap

+
∑

j:j≥(w)Ap

)
2
−γj/(w)Ap . (w)Ap .

This gives that

‖T∞f‖Lp(w) . ‖Ω‖L∞{w}Ap(w)Ap‖f‖Lp(w).(20)

Combining (15) and (20), we obtain

‖TP f‖Lp(w) . ‖Ω‖L∞{w}Ap(w)Ap‖f‖Lp(w).(21)

Case 2.
∑
|α|=k
|β|=l

|aαβ | 6= 1

Denote A =
(∑

|α|=k
|β|=l

|aαβ |
)1/(k+l)

. We can write p(x, y) as follows:

p(x, y) =
∑
|α|=k
|β|=l

aαβ
Ak+l

(Ax)α(Ay)β +R0(
Ax

A
,
Ay

A
) =: Q(Ax,Ay).

Thus

TP f(x) =

∫
eiQ(Ax,Ay)K(x− y)f(y)dy

=

∫
eiQ(Ax,y)K(Ax− y)f(

y

A
)dy,

where K(x) = Ω(x′)
|x|n . From the result in Case 1, we obtain

‖TP f‖Lp(w) ≤ C‖Ω‖L∞{w}Ap(w)Ap‖f‖Lp(w),

where C depends only on the total degree of P (x, y), but not on the coefficients
of P (x, y). So Theorem 1.1 holds for any polynomial P (x, y) by induction
principle.

3.2. Proof of Theorem 1.2

We shall carry out the argument by a double induction on the degrees in x
and y of the polynomial P as in the proof of Theorem 1.1. As in the proof of
Theorem 1.1, we write

P (x, y) =
∑
|α|=k
|β|=l

aαβx
αyβ +R(x, y).

Since our conclusion is clearly invariant under dilation, we may assume that∑
|α|=k
|β|=l

|aαβ | = 1.

If k = 0, we know that the conclusion holds from the result in [14] and [10].

T ∗Ωf(x) = sup
ε>0

∣∣ ∫
|x−y|>ε

Ω(x− y)

|x− y|n
f(y)dy

∣∣
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satisfies

‖T ∗Ωf‖Lp(w) . {w}Ap(w)Ap‖f‖Lp(w).(22)

For general P (x, y), we have

T ∗P f(x) ≤ sup
0<ε<1

∣∣∣ ∫
|x−y|>ε

eiP (x,y) Ω(x− y)

|x− y|n
f(y)dy

∣∣∣
+ sup
ε≥1

∣∣∣ ∫
|x−y|>ε

eiP (x,y) Ω(x− y)

|x− y|n
f(y)dy

∣∣∣
≤ sup

0<ε<1

∣∣∣ ∫
ε<|x−y|<1

eiP (x,y) Ω(x− y)

|x− y|n
f(y)dy

∣∣∣
+
∣∣∣ ∫
|x−y|≥1

eiP (x,y) Ω(x− y)

|x− y|n
f(y)dy

∣∣∣
+ sup
ε≥1

∣∣∣ ∫
|x−y|>ε

eiP (x,y) Ω(x− y)

|x− y|n
f(y)dy

∣∣∣
= T∗,0f(x) + T∞f(x) + T∗,∞f(x).

By (20),

‖T∞f‖Lp(w) . ‖Ω‖L∞{w}Ap(w)Ap‖f‖Lp(w).

Now, it suffices to estimate T∗,0 and T∗,∞.
By the method similar to proving (15) we can easily prove that

‖T∗,0f‖Lp(w) . ‖Ω‖L∞{w}Ap(w)Ap‖f‖Lp(w).

Notice that for fixed ε > 0, we can always find a unique J ∈ Z+ such that
2J−1 ≤ ε < 2J . Thus

T∗,∞f(x) ≤ sup
J∈Z+

∫
2J−1≤|y|<2J

|Ω(y′)|
|y|n

|f(x− y)|dy

+ sup
J∈Z+

∑
j=J+1

∣∣∣ ∫
2j−1≤|x−y|<2j

eip(x,y) Ω(x− y)

|x− y|n
f(y)dy

∣∣∣
≤ sup
J∈Z+

∫
2J−1≤|y|<2J

|Ω(y′)|
|y|n

|f(x− y)|dy

+

+∞∑
j=1

∣∣∣ ∫
2j−1≤|x−y|<2j

eiP (x,y) Ω(x− y)

|x− y|n
f(y)dy

∣∣∣
≤Mf(x) +

+∞∑
j=1

∣∣∣ ∫
2j−1≤|x−y|<2j

eiP (x,y) Ω(x− y)

|x− y|n
f(y)dy

∣∣∣.
From (8) and the method similar to proving (20), we get

‖T∗,∞f‖Lp(w) . ‖Ω‖L∞{w}Ap(w)Ap‖f‖Lp(w).

So we have finished the proof of the theorem.
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