DOI QR코드

DOI QR Code

FURTHER RESULTS ON BIASES IN INTEGER PARTITIONS

  • Chern, Shane (Department of Mathematics Penn State University)
  • Received : 2021.02.10
  • Accepted : 2021.06.04
  • Published : 2022.01.31

Abstract

Let pa,b,m(n) be the number of integer partitions of n with more parts congruent to a modulo m than parts congruent to b modulo m. We prove that pa,b,m(n) ≥ pb,a,m(n) whenever 1 ≤ a < b ≤ m. We also propose some conjectures concerning series with nonnegative coefficients in their expansions.

Keywords

References

  1. G. E. Andrews, On a partition problem of H. L. Alder, Pacific J. Math. 36 (1971), 279-284. http://projecteuclid.org/euclid.pjm/1102971065 https://doi.org/10.2140/pjm.1971.36.279
  2. G. E. Andrews, The theory of partitions, reprint of the 1976 original, Cambridge Mathematical Library, Cambridge University Press, Cambridge, 1998.
  3. P. L. Chebyshev, Lettre de M. le Professeur Tchebychev a M. Fuss sur un nouveaux theoreme relatif aux nombres premiers contenus dans les formes 4n + 1 et 4n + 3, Bull. Classe Phys. Acad. Imp. Sci. St. Petersburg 11 (1853), p. 208.
  4. B. Kim and E. Kim, Biases in integer partitions, Bull. Aust. Math. Soc., in press. https://doi.org/10.1017/S0004972720001495
  5. B. Kim, E. Kim, and J. Lovejoy, Parity bias in partitions, European J. Combin. 89 (2020), 103159, 19 pp. https://doi.org/10.1016/j.ejc.2020.103159