DOI QR코드

DOI QR Code

Characteristics, mathematical modeling and conditional simulation of cross-wind layer forces on square section high-rise buildings

  • Ailin, Zhang (School of Civil and Transportation Engineering, Beijing University of Civil Engineering and Architecture) ;
  • Shi, Zhang (School of Civil and Transportation Engineering, Beijing University of Civil Engineering and Architecture) ;
  • Xiaoda, Xu (Central Research Institute of Building and Construction CO., LTD. ) ;
  • Yi, Hui (School of Civil Engineering, Chongqing University) ;
  • Giuseppe, Piccardo (Department of Civil, Chemical and Environmental Engineering - DICCA, University of Genoa)
  • 투고 : 2022.08.22
  • 심사 : 2022.11.09
  • 발행 : 2022.12.25

초록

Wind tunnel experiment was carried out to study the cross-wind layer forces on a square cross-section building model using a synchronous multi-pressure sensing system. The stationarity of measured wind loadings are firstly examined, revealing the non-stationary feature of cross-wind forces. By converting the measured non-stationary wind forces into an energetically equivalent stationary process, the characteristics of local wind forces are studied, such as power spectrum density and spanwise coherence function. Mathematical models to describe properties of cross-wind forces at different layers are thus established. Then, a conditional simulation method, which is able to ex-tend pressure measurements starting from experimentally measured points, is proposed for the cross-wind loading. The method can reproduce the non-stationary cross-wind force by simulating a stationary process and the corresponding time varying amplitudes independently; in this way the non-stationary wind forces can finally be obtained by combining the two parts together. The feasibility and reliability of the proposed method is highlighted by an ex-ample of across wind loading simulation, based on the experimental results analyzed in the first part of the paper.

키워드

과제정보

This study is supported by the National Natural Science Foundation of China (52108431) and Beijing Natural Science Foundation (8222013). This work is funded by the Project supported by Beijing Postdoctoral Research Foundation (2021-ZZ-115), the Pyramid Talent Training Project of Beijing University of Civil Engineering and Architecture (JDYC20220806) and the Research Ability Enhancement Program for Young Teachers of Beijing University of Civil Engineering and Architecture (X21071). It is also supported by the 111 Project on Grant B18062.

참고문헌

  1. Beitel, A., Heng, H. and Sumner, D. (2019), "The effect of aspect ratio on the aerodynamic forces and bending moment for a surface-mounted finite-height cylinder", J. Wind Eng. Ind. Aerod., 186, 204-213. https://doi.org/10.1016/j.jweia.2019.01.009.
  2. Buresti, G. (2012), Elements of Fluid Dynamics. Imperial College Press, London, Britain.
  3. Buresti, G., Lombardi, G. and Talamelli, A. (1998), "Low aspect-ratio triangular prisms in cross-flow: measurements of the wake fluctuating velocity field", J. Wind Eng. Ind. Aerod., 74-76, 463-473. https://doi.org/ 10.1016/S0167-6105(98)00042-7.
  4. Buresti, G., Lombardi, G. and Bellazzini, J. (2004), "On the analysis of fluctuating velocity signals through methods based on the wavelet and Hilbert transforms", Chaos Solitons Fractals, 20(1), 149-158. https://doi.org/10.1081/MA-120005802.
  5. Buresti, G. and Iungo, G.V. (2010), "Experimental investigation on the connection between flow fluctuations and vorticity dynamics in the near wake of a triangular prism placed vertically on a plane", J. Wind Eng. Ind. Aerod., 98, 253-262.https://doi.org/10.1016/j.jweia.2009.10.004.
  6. Chen, Z., Xu, Y., Huang, H. and Tse, K.T. (2020), "Wind tunnel measurement systems for un-steady aerodynamic forces on bluff bodies: review and new perspective", Sensors, 20(16), 4633. https://doi.org/10.3390/s20164633.
  7. Chen, F.B. and Li, Q.S. (2004), "Application investigation of predicting of predicting wind loads on large-span roof by Kriging-POD method". E. M, 31(1), 91-96. https://doi.org/10.6052/j.issn.1000-4750.2012.07.0539. (in Chinese)
  8. Da Silva, B.L., Chakravarty, R., Sumner, D. and Bergstrom D.J. (2020), "Aerodynamic forces and three-dimensional flow structures in the mean wake of a surface-mounted finite-height square prism", Int. J. Heat Fluid Fl., 83, 108569. https://doi.org/10.1016/ j.ijheatfluidflow.2020.108569.
  9. Ding, Z. and Tamura, Y. (2013), "Contributions of wind-induced overall and local behaviors for internal forces in cladding support components of large-span roof structure", J. Wind Eng. Ind. Aerod., 115, 162-172. https://doi.org/10.1016/j.jweia.2013.01.013.
  10. Frison, G., Marra, A.M., Bartoli, G. and Scotta, R. (2021), "HFBB model test for tall buildings: A comparitive benchmark with a full-aeroelastic model", Eeg. Struct., 242, 112591. https://doi.org/10.1016/j.engstruct.2021.112591.
  11. Gu, M., Ge, F. and Han, N. (2014), "Characteristics of across-wind layer wind force interference effect of two square tall buildings", J. Tongji Univ., 42(8), 1147-1152. https://doi.org/10.3969/j.issn.0253-374x.2014.05.001.
  12. Gu, M. and Quan, Y. (2004), "Across-wind loads of typical tall buildings", J. Wind Eng. Ind. Aerod., 92(13), 1147-1165. https://doi.org/10.3969/j.issn.0253-374x.2014.05.001.
  13. Gu, M. and Ye, F. (2006), "Frequence domain characteristics of wind loads on typical super-tall buildings", J. Build. Struct., 27(1), 30-36. https://doi.org/10.1016/S1010-5182(06)60391-0.
  14. Gurley, K.R., Tognarelli, M.A. and Kareem, A. (1997), "Analysis and simulation tools for wind engineering", Probabilist. Eng. Mech., 12(1), 9-31. https://doi.org/10.1016/S0266-8920(96)00010-0.
  15. Gurley, K.R. and Kareem, A. (1998), "A conditional simulation of non-normal velocity/pressure fields", J. Wind Eng. Ind. Aerod., 77-78, 39-51. https://doi.org/10.1016/S0167-6105(98)00130-5.
  16. Hamed, K.H. and Rao, A.R. (1998), "A modified Mann-Kendall trend test for autocorrelated data", J. Hydrol, 204, 182-196. https://doi.org/10.1016/s0022-1694(97)00125-x.
  17. Hassan, S., Molla, M.M., Nag, P., Akhter, N. and Khan, A. (2022), "Unsteady RANS simulation of wind flow around a building shape obstacle", Build Simul-China, 15(2), 291-312. https://doi.org/10.1007/s12273-021-0830-7.
  18. Holmes, J.D., Sankaran, R., Kwok, K.C.S. and Syme, M.J. (1997), "Eigenvector modes of fluctu-ating pressures on low-rise building models", J. Wind Eng. Ind. Aerod., 69, 697-707. https://doi.org/10.1016/S0167-6105(97)00198-0.
  19. Hu, L., Xu, Y.L. and Zheng, Y. (2012), "Conditional simulation of spatially variable seismic ground motions based on evolutionary spectra", Earthq. Eng. Struct. D., 41, 2125-2139. https://doi.org/10.1002/eqe.2178.
  20. Hu, G., Song, J., Hassanli, S., Ong, R. and Kwok, K.C.S. (2019), "The effects of a double-skin facade on the cladding pressure around a tall building", J. Wind Eng. Ind. Aerod., 191, 239-251. https://doi.org/10.1016/j.jweia.2019.06.005.
  21. Hu, G., Liu, L., Tao, D., Song, J., Tse, K.T. and Kwok, K.C.S. (2020), "Deep learning-based investigation of wind pressures on tall building under interference effects", J. Wind Eng. Ind. Aerod., 201, 104138. https://doi.org/10.1016/j.jweia.2020.104138.
  22. Huang, G., Chen, X., Liao, H. and Li, M (2013), "Predicting of tall building response to non-stationary winds using multiple wind speed samples", Wind Struct., 17(2), 227-244. https://doi.org/10.12989/was.2013.17.2.227.
  23. Huang, M., Tse, K.T., Chan, C.M., Kwok, K.C.S., Hitchcock, P.A. and Lou, W. (2011), "Mode shape linearization and correction in coupled dynamic analysis of wind-excited tall buildings", Struct. Des. Tall Spec., 20, 327-248. https://doi.org/10.1002/tal.620.
  24. Huang, D.M. and Zhu, L.D. (2009), "Mathematical model of spatial correlation of wind pressure coefficients for super-tall buildings: comprehensive analysis method", China Civil Eng. J., 42(8), 26-36. https://doi.org/10.1007/978-3-540-85168-4_52.
  25. Huang, D.M., Zhu, L.D. and Chen, W. (2014), "Power spectra of wind forces on a high-rise building with section varying along height", Wind Struct., 18(3), 295-320. https://doi.org/10.12989/was.2014.18.3.295.
  26. Hui, Y., Li, B., Kawai, H. and Yang, Q.S. (2017), "Non-stationary and non-Gaussian Characteristics of wind speeds", Wind Struct., 24(1), 59-78. https://doi.org/10.12989/was.2017.24. 1.059.
  27. Hui, Y., Yuan K., Chen, Z.Q. and Yang, Q.S. (2019), "Characteristics of aerodynamic forces on high-rise buildings with various facade appurtenances", J. Wind Eng. Ind. Aerod., 191, 76-90. https://doi.org/10.1016/j.jweia. 2019.06.002.
  28. Hui, Y., Tamura, Y. and Yoshida, A. (2012), "Mutual interference effects between two high-rise building models with different shapes on local peak pressure coefficients", J. Wind Eng. Ind. Aerod., 104-106, 98-108. https://doi.org/10.1016/j.jweia.2012.04.004.
  29. Kameda, H. and Morikawa, H. (1994), "Conditional stochastic processes for conditional random fields", J. Eng. Mech. - ASCE, 120(4), 855-875. https://doi.org/10.1061/(ASCE)0733-9399(1994)120:4(855)
  30. Katsumura, A., Katagiri, J., Marukawa, H. and Fujii, K. (2001), "Effects of side ratio on character-istics of across-wind and torsional responses of high-rise buildings", J. Wind Eng. Ind. Aerod., 89(14), 1433-1444. https://doi.org/10.1016/S0167-6105(01)00145-3.
  31. Kendall, M.G. (1970), Rank Correlation Methods, 4th Ed. Griffin, London, Britain.
  32. Krige, D.G. (1966), "Two-dimensional weighted moving average trend surfaces for ore valuation", Proceedings of the symposium on mathematical statistics and computer applications in ore valuation, Johannesburg.
  33. Kumar, K.S. (2020), "Wind loading on tall buildings: review of indian standards and recommended amendments", J. Wind Eng. Ind. Aerod., 204, 104240. https://doi.org/10.1016/j.jweia.2020.104240.
  34. Kwok, K.C.S. (1982), "Cross-wind response of tall buildings", Eng. Struct., 4, 256-262. https://doi.org/10.1016/0141-0296(82)90031-1.
  35. Li, Y., Tian, X., Tee, K.F., Li, Q.S. and Li, Y.G. (2017), "Aerodynamic treatments for reduction of wind loads on high-rise buildings", J. Wind Eng. Ind. Aerod., 172, 107-115. https://doi.org/10.1016/j.jweia.2017.11.006.
  36. Li, Y.G., Yan, J.H., Li, Y., Xiao, C.X. and Ma, J.X. (2021), "Wind tunnel study of wind effects on 90° helical and square tall buildings: A comparative study", J. Build. Eng., 42, 103068. https://doi.org/10.1016/j.jobe.2021.103068.
  37. Liang, S., Liu, S., Li, Q.S., Zhang, L. and Gu, M. (2002), "Mathematical model of acrosswind dynamic loads on rectangular tall buildings", J. Wind Eng. Ind. Aerod., 90(12-15), 1757-1770. https://doi.org/10.1016/s0167-6105(02)00285-4.
  38. Lin, N., Letchford, C., Tamura, Y., Liang, B. and Nakamura, O. (2005), "Characteristics of wind forces acting on tall buildings", J. Wind Eng. Ind. Aerod., 93, 217-242. https://doi.org/10.1016/j.jweia.2004.12.001.
  39. MATLAB (2019), MATLAB version R2019b. The MathWorks Inc., Natick, Massachusetts.
  40. Olhede, S. and Walden, A.T. (2004), "The Hilbert spectrum via wavelet projections", P. Roy Soc. A-Math Phy., 460(2044), 955-975. https://doi.org/10.1098/rspa.2003.1199
  41. Priestley, M.B. (1966), "Design relations for non-stationary processes", J. R. Stat. Soc. B., 28, 228-240. https://doi.org/10.1111/j.2517-6161.1966.tb00636.x.
  42. Quan, Y., Zhang, Z., Gu, M. and Xiong, Y. (2012), "Study of the rms values of across-wind aero-dynamic base moment coefficients of high-rise buildings with square or rectangular sections", China Civil Eng. J., 45(4), 63-70. https://doi.org/10.1016/j.jweia.2013.01.013.
  43. Roncallo, L. and Solari, G. (2020), "An evolutionary power spectral density model of thunderstorm outflows consistent with real-scale time-history records", J. Wind Eng. Ind. Aerod., 203, 104204. https://doi.org/10.1016/j.jweia.2020.104204.
  44. Shinozuka, M. and Zhang, R. (1996), "Equivalence between Kriging and CPDF methods for conditional simulation", J. Eng. Mech. - ASCE, 122, 530-538. https://doi.org/10.12989/scs.2013.91.4.1301.
  45. Solari, G. (1985), "Mathematical model to predict 3-D wind loading on buildings", J. Eng. Mech., 111(2), 254-276. https://doi.org/10.1061/(ASCE)0733-9399(1985)111:2(254).
  46. Solari, G., Pagnini, L.C. and Piccardo, G. (1997), "A numerical algorithm for the aerodynamic identification of structures", J. Wind Eng. Ind. Aerod., 69-71, 719-730. https://doi.org/10.1016/S0167-6105(97)00200-6.
  47. Solari, G. and Tubino, F. (2002), "A turbulence model based on principal components", Probabilist. Eng. Mech., 17(4), 327-335. https://doi.org/10.1016/S0266-8920(02)00016-4.
  48. Sumner, D., Rostamy, N., Bergstrom, D.J. and Bugg, J.D. (2015), "Influence of aspect ratio on the flow above the free end of a surface-mounted finite cylinder", Int. J. Heat Fluid Fl., 56, 290-304. https://doi.org/10.1016/j.ijheatfluidflow.2015.08.005.
  49. Sumner, D., Rostamy, N., Bergstrom, D.J. and Bugg, J.D. (2017), "Influence of aspect ratio on the mean flow field of a surface-mounted finite-height square prism", Int. J. Heat Fluid Fl., 65, 1-20. https://doi.org/10.1016/j.ijheatfluidflow.2017.02.004.
  50. Tanaka, H., Tamura, Y., Ohtake, K., Nakai M. and Kim, Y.C. (2012), "Experimental investigation of aerodynamic forces and wind pressures acting on tall buildings with various unconventional configurations", J. Wind Eng. Ind. Aerod., 107-108, 179-191. https://doi.org/10.1016/j.jweia.2012.04.014.
  51. Tamura, Y., Suganuma, S., Kikuchi, H. and Hibi, K. (1999), "Proper orthogonal decomposition of random wind pressure field", J. Fluid Struct., 13(7-8), 1069-1095. https://doi.org/10.1006/jfls.1999.0242.
  52. Tschanz, T. and Davenport, A.G. (1983). "The base balance technique for the determination of dynamic wind loads", J. Wind Eng. Ind. Aerod., 13, 429-439. https://doi.org/10.1016/0167-6105(83)90162-9.
  53. Vanmarcke, E.H., Heredia-Zavoni, E. and Fenton, G.A. (1993), "Conditional simulation of spa-tially correlated earthquake ground motion", J. Eng. Mech. - ASCE, 119(11), 2333-2352. https://doi.org/10.1061/(ASCE)0733-9399(1993)119:11(2333).
  54. Walden, A.T. and Contreras Cristan, A. (1998), "The phase-corrected undecimated discrete wave-let packet transform and its application to interpreting the timing of events", Proc. R. Soc. Lond. A, 454, 2243-2266. https://doi.org/10.2307/53216.
  55. Wang, H., Xu, Z., Wu, T. and Mao, J. (2018), "Evolutionary power spectral density of recorded typhoons at Sutong Bridge using harmonic wavelets", J. Wind Eng. Ind. Aerod., 177, 197-212. https://doi.org/10.1016/j.jweia.2018.04.015.
  56. Xu, Y.L., Hu, L. and Kareem, A. (2014), "Conditional simulation of nonstationary fluctuating wind speeds for long-span bridges", J. Eng. Mech. - ASCE, 140(1), 61-73. https://doi.org/10.1061/(ASCE)EM.1943-7889.0000589.
  57. Zhang, S., Yang, Q., Solari, G., Li, B. and Huang, G. (2019), "Characteristics of thunderstorm outflows in Beijing urban area", J. Wind Eng. Ind. Aerod., 195, 104011. https://doi.org/10.1016/j.jweia.2019.104011.
  58. Zhou, L., Tse, K.T., Hu, G. and Li, Y.T. (2021a), "Higher order dynamic mode decomposition of wind pressures on square buildings", J. Wind Eng. Ind. Aerod., 211, 104545. https://doi.org/10.1016/j.jweia.2021.104545.
  59. Zhou, L., Tse, K.T., Hu, G. and Li, Y.T. (2021b), "Mode interpretation of interference effects between tall buildings in tandem and side-by-side arrangement with POD and ICA", Eng. Struct., 243, 112616. https://doi.org/10.1016/j.engstruct.2021.112616.
  60. Zhou, Y. and Kareem, A. (2001), "Gust loading factor: new model", J. Struct. Eng. - ASCE, 127(2), 168-175. https://doi.org/10.1061/(ASCE)0733-9445(2001)127:2(168).
  61. Zhou, Y., Kijewski, T. and Kareem, A. (2003), "Aerodynamic loads on tall buildings: interactive database", J. Struct. Eng. - ASCE, 129(3), 394-404. https://doi.org/10.1061/(ASCE)0733-9.