DOI QR코드

DOI QR Code

Investigation of aerodynamic behaviour of a high-speed train on different railway infrastructure scenarios under crosswind

  • Jiqiang, Niu (State Key Laboratory of Automotive Simulation and Control, College of Automotive Engineering, Jilin University) ;
  • Yingchao, Zhang (State Key Laboratory of Automotive Simulation and Control, College of Automotive Engineering, Jilin University) ;
  • Zhengwei, Chen (Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University) ;
  • Rui, Li (School of Mechanical Engineering, Lanzhou Jiaotong University) ;
  • Huadong, Yao (Department of Mechanics and Maritime Sciences, Chalmers University of Technology)
  • Received : 2022.05.04
  • Accepted : 2022.12.10
  • Published : 2022.12.25

Abstract

The aerodynamic behaviour of a CRH high-speed train under three infrastructure scenarios (flat ground, embankment, and viaduct) in the presence of a crosswind was simulated using a 1/8th scaled train model with three cars and the IDDES framework. The time-averaged and instantaneous flow field around the model were examined. The employed numerical algorithm was verified through a wind tunnel test, and the grid and timestep resolution analyses were conducted to ensure the reliability of the data. It was noted that the flow around the rail line was different under different infrastructure scenarios, especially in the case of the embankment, which degraded the aerodynamic performance of the train under the crosswind. The flow around the train on the flat ground and viaduct was different, although the aerodynamic performance of the train was similar in both cases. Moreover, the viaduct accidents were noted to have the most critical consequences, thereby requiring the most attention. The aerodynamic performance of the train on the windward track of the embankment under the crosswind was worse than that of the train on the leeward track. But for the other two infrastructure scenarios, the aerodynamic performance of the train on the windward track is relatively dangerous, which is mainly caused by the head car. These observations suggest that the aerodynamic behaviour of the train on an embankment under a crosswind must be carefully considered and that certain wind protection measures must be adopted around rail lines in windy areas.

Keywords

Acknowledgement

The research described in this paper was financially supported by the Foundation of State Key Laboratory of Automotive Simulation and Control (20191104), and Fundamental Research Funds for the Central Universities (XJ2021KJZK010).

References

  1. Andersson, E., Haggstrom, J., Sima, M. and Stichel, S. (2004), "Assessment of train-overturning risk due to strong crosswinds", P. I. Mech. Eng. F-J. Rai., 218(3), 213-223. https://doi.org/10.1243/0954409042389382. 
  2. Baker, C., Cheli, F., Orellano, A., Paradot, N., Proppe, C. and Rocchi, D. (2009), "Cross-wind effects on road and rail vehicles", Vehicle Syst. Dyn., 47(8), 983-1022. https://doi.org/10.1080/00423110903078794. 
  3. Baker, C.J. (2010), "The simulation of unsteady aerodynamic cross wind forces on trains", J. Wind Eng. Ind. Aerod., 98(2), 88-99. https://doi.org/10.1016/j.jweia.2009.09.006. 
  4. Baker, C.J. (2014), "A review of train aerodynamics Part 1-Fundamentals", Aeronaut. J., 118(1201), 201-228. https://doi.org/10.1017/S000192400000909X. 
  5. Baker, C.J., Jones, J., Lopez-Calleja, F. and Munday, J. (2004), "Measurements of the cross wind forces on trains", J. Wind Eng. Ind. Aerod., 92(7-8), 547-563. https://doi.org/10.1016/j.jweia.2004.03.002. 
  6. Barcala, M.A. and Meseguer, J. (2007), "An experimental study of the influence of parapets on the aerodynamic loads under cross wind on a two-dimensional model of a railway vehicle on a bridge", P. I. Mech. Eng. F-J. Rai., 221(4), 487-494. https://doi.org/10.1243/09544097JRRT53. 
  7. Bocciolone, M., Cheli, F., Corradi, R., Muggiasca, S. and Tomasini, G. (2008), "Crosswind action on rail vehicles: wind tunnel experimental analyses", J. Wind Eng. Ind. Aerod., 96(5), 584-610. https://doi.org/10.1016/j.jweia.2008.02.030. 
  8. Catanzaro, C., Cheli, F., Rocchi, D., Schito, P. and Tomasini, G. (2016), "High-speed train crosswind analysis: CFD study and validation with wind-tunnel tests", (Eds., Dillmann, A. and Orellano, A.) The Aerodynamics of Heavy Vehicles III. ECI 2010. Lecture Notes in Applied and Computational Mechanics, vol 79. Springer, Cham. https://doi.org/10.1007/978-3-319-20122-1_6. 
  9. CEN European Standard (2003), 14067-1 Railway applications: Aerodynamics. Part 1: Symbols and units. 
  10. CEN European Standard (2010), 14067-6 Railway Applications-Aerodynamics. Part 6: Requirements and test procedures for crosswind assessment. 
  11. Cheli, F., Corradi, R., Rocchi, D., Tomasini, G. and Maestrini, E. (2010), "Wind tunnel tests on train scale models to investigate the effect of infrastructure scenario", J. Wind Eng. Ind. Aerod., 98(6-7), 353-362. https://doi.org/10.1016/j.jweia.2010.01.001. 
  12. Cheli, F., Ripamonti, F., Rocchi, D. and Tomasini, G. (2010), "Aerodynamic behaviour investigation of the new EMUV250 train to cross wind", J. Wind Eng. Ind. Aerod., 98(4-5), 189-201. https://doi.org/10.1016/j.jweia.2009.10.015. 
  13. Chen, Z., Liu, T., Jiang, Z., Guo, Z. and Zhang, J. (2018), "Comparative analysis of the effect of different nose lengths on train aerodynamic performance under crosswind", J. Fluid Struct., 78, 69-85. https://doi.org/10.1016/j.jfluidstructs.2017.12.016. 
  14. Chen, Z., Liu, T., Li, W., Guo, Z. and Xia, Y. (2021), "Aerodynamic performance and dynamic behaviors of a train passing through an elongated hillock region beside a windbreak under crosswinds and corresponding flow mitigation measures", J. Wind Eng. Ind. Aerod., 208, 104434. https://doi.org/10.1016/j.jweia.2020.104434. 
  15. Cui, T., Zhang, W. and Sun, B. (2014). "Investigation of train safety domain in cross wind in respect of attitude change", J. Wind Eng. Ind. Aerod., 130, 75-87. https://doi.org/10.1016/j.jweia.2014.04.006. 
  16. Deng, E., Yang, W., Deng, L., Zhu, Z., He, X. and Wang, A. (2020), "Time-resolved aerodynamic loads on high-speed trains during running on a tunnel-bridge-tunnel infrastructure under crosswind", Eng. Appl. Comp. Fluid, 14(1), 202-221. https://doi.org/10.1080/19942060.2019.1705396. 
  17. Diedrichs, B., Sima, M., Orellano, A. and Tengstrand, H. (2007), "Crosswind stability of a high-speed train on a high embankment", P. I. Mech. Eng. F-J. Rai., 221(2), 205-225. https://doi.org/10.1243/0954409JRRT126. 
  18. Dong, T., Minelli, G., Wang, J., Liang, X. and Krajnovic, S. (2020), "The effect of ground clearance on the aerodynamics of a generic high-speed train", J. Fluid Struct., 95, 102990. https://doi.org/10.1016/j.jfluidstructs.2020.102990. 
  19. Dorigatti, F., Sterling, M., Baker, C.J. and Quinn, A.D. (2015), "Crosswind effects on the stability of a model passenger train - A comparison of static and moving experiments", J. Wind Eng. Ind. Aerod., 138, 36-51. https://doi.org/10.1016/j.jweia.2014.11.009. 
  20. Du, J., Liang, X.F., Li, G.B., Tian, H.L. and Yang, M.Z. (2020), "Numerical simulation of rainwater accumulation and flow characteristics over windshield of high-speed trains", J. Cent. South Univ., 27(1), 198-209. https://doi.org/10.1007/s11771-020-4288-z. 
  21. Fujii, T., Maeda, T., Ishida, H., Imai, T., Tanemoto, K. and Suzuki, M. (1999), "Wind-induced accidents of train/vehicles and their measures in Japan", Quarterly report of RTRI, 40(1), 50-55. https://doi.org/10.2219/rtriqr.40.50. 
  22. Gou, H., Li, W., Zhou, S., Bao, Y., Zhao, T., Han, B. and Pu, Q. (2021), "Dynamic response of high-speed train-track-bridge coupling system subjected to simultaneous wind and rain", Int. J. Struct. Stab. Dy., 21(11), 2150161. https://doi.org/10.1142/S0219455421501613. 
  23. Gritskevich, M.S., Garbaruk, A.V., Schutze, J. and Menter, F.R. (2012), "Development of DDES and IDDES formulations for the k-ω shear stress transport model", Flow Turbul. Combust., 88(3), 431-449. https://doi.org/10.1007/s10494-011-9378-4. 
  24. Guo, W., Wang, Y., Xia, H. and Lu, S. (2015), "Wind tunnel test on aerodynamic effect of wind barriers on train-bridge system", Sci. China Technol. Sc., 58(2), 219-225. https://doi.org/10.1007/s11431-014-5675-1. 
  25. Guo, Z., Liu, T., Chen, Z., Xia, Y., Li, W. and Li, L. (2020), "Aerodynamic influences of bogie's geometric complexity on high-speed trains under crosswind", J. Wind Eng. Ind. Aerod., 196, 104053. https://doi.org/10.1016/j.jweia.2019.104053. 
  26. Guo, Z., Liu, T., Yu, M., Chen, Z., Li, W., Huo, X. and Liu, H. (2019), "Numerical study for the aerodynamic performance of double unit train under crosswind", J. Wind Eng. Ind. Aerod., 191, 203-214. https://doi.org/10.1016/j.jweia.2019.06.014. 
  27. Han, Y., Zhang, X., Wang, L., Zhu, Z., Cai, C.S. and He, X. (2022), "Running safety assessment of a train traversing a long-span bridge under sudden changes in wind loads owing to damaged wind barriers". Int. J. Struct. Stab. Dy., 2241010. https://doi.org/10.1142/S0219455422410103. 
  28. He, X., Shi, K. and Wu, T. (2020), "An efficient analysis framework for high-speed train-bridge coupled vibration under non-stationary winds", Struct. Infrastruct. E., 16(9), 1326-1346. https://doi.org/10.1080/15732479.2019.1704800. 
  29. He, X., Zhou, L., Chen, Z., Jing, H., Zou, Y. and Wu, T. (2019), "Effect of wind barriers on the flow field and aerodynamic forces of a train-bridge system", P. I. Mech. Eng. F-J. Rai., 233(3), 283-297. https://doi.org/10.1177/0954409718793220. 
  30. Howell, J.P. (1986), "Aerodynamic response of maglev train models to a crosswind gust", J. Wind Eng. Ind. Aerod., 22(2-3), 205-213. https://doi.org/10.1016/0167-6105(86)90085-1. 
  31. Izuan, A.I., Mohamed, S.M.A. and Sheikh A.Z.S.S. (2017), "Mesh size refining for a simulation of flow around a generic train model", Wind Struct., 24(3), 223-247. https://doi.org/10.12989/was.2017.24.3.223. 
  32. Jiang, Z., Liu, T., Gu, H. and Guo, Z. (2021), "A numerical study of aerodynamic characteristics of a high-speed train with different rail models under crosswind", P. I. Mech. Eng. F-J. Rai., 235(7), 840-853. https://doi.org/10.1177/0954409720969250. 
  33. Krajnovic, S., Ringqvist, P., Nakade, K. and Basara, B. (2012), "Large eddy simulation of the flow around a simplified train moving through a crosswind flow", J. Wind Eng. Ind. Aerod., 110, 86-99. https://doi.org/10.1016/j.jweia.2012.07.001. 
  34. Krappel, T., Kuhlmann, H., Kirschner, O., Ruprecht, A. and Riedelbauch, S. (2015), "Validation of an IDDES-type turbulence model and application to a francis pump turbine flow simulation in comparison with experimental results", Int. J. Heat Fluid Fl., 55, 167-179. https://doi.org/10.1016/j.ijheatfluidflow.2015.07.019. 
  35. Li, H., He, X., Wang, H., and Kareem, A. (2019), "Aerodynamics of a scale model of a high-speed train on a streamlined deck in cross winds". J. Fluid Struct., 91(91), 102717. https://doi.org/10.1016/j.jfluidstructs.2019.102717 
  36. Li, L., Liu, T., Guo, Z., Li, W. and Xia, Y. (2022), "On the effect of rail-end slope in train aerodynamics under crosswind", Vehicle Syst. Dyn., 60(6), 1888-1908. https://doi.org/10.1016/j.jweia.2020.104404. 
  37. Li, T., Dai, Z., Yu, M. and Zhang, W. (2021), "Numerical investigation on the aerodynamic resistances of double-unit trains with different gap lengths", Eng. Appl. Comp. Fluid., 15(1), 549-560. https://doi.org/10.1080/19942060.2021.1895321. 
  38. Li, T., Hemida, H. and Zhang, J. (2020), "Evaluation of SA-DES and SST-DES models using OpenFOAM for calculating the flow around a train subjected to crosswinds", P. I. Mech. Eng. F-J. Rai., 234(10), 1346-1357. https://doi.org/10.1177/0954409719895652. 
  39. Li, X.Z., Wang, M., Xiao, J., Zou, Q.Y. and Liu, D.J. (2018), "Experimental study on aerodynamic characteristics of high-speed train on a truss bridge: A moving model test", J. Wind Eng. Ind. Aerod., 179, 26-38. https://doi.org/10.1016/j.jweia.2018.05.012. 
  40. Li, Y., Zhang, J., Zhang, M., Wang, Z. and Guo, J. (2019), "Aerodynamic effects of viaduct-cutting connection section on high-speed railway by wind tunnel tests", J. Aerosp. Eng., 32(5), 05019002. https://doi.org/10.1061/(ASCE)AS.1943-5525.0001065. 
  41. Liang, X., Zhang, X., Chen, G. and Li, X. (2020), "Effect of the ballast height on the slipstream and wake flow of high-speed train", J. Wind Eng. Ind. Aerod., 207, 104404. https://doi.org/10.1016/j.jweia.2020.104404. 
  42. Liu, D., Lu, Z., Cao, T. and Li, T. (2017), "A real-time posture monitoring method for rail vehicle bodies based on machine vision", Vehicle Syst. Dyn., 55(6), 853-874. https://doi.org/10.1080/00423114.2017.1284339. 
  43. Liu, D., Tomasini, G.M., Rocchi, D., Cheli, F., Lu, Z. and Zhong, M. (2020b), "Correlation of car-body vibration and train overturning under strong wind conditions", Mech. Syst. Signal. Pr., 142, 106743. https://doi.org/10.1016/j.ymssp.2020.106743. 
  44. Liu, D., Wang, Q., Zhong, M., Lu, Z., Wang, J., Wang, T. and Lv, S. (2019), "Effect of wind speed variation on the dynamics of a high-speed train". Vehicle Syst. Dyn., 57(2), 247-268. https://doi.org/10.1080/00423114.2018.1459749. 
  45. Liu, D., Wang, T., Liang, X., Meng, S., Zhong, M. and Lu, Z. (2020a), "High-speed train overturning safety under varying wind speed conditions", J. Wind Eng. Ind. Aerod., 198, 104111. https://doi.org/10.1016/j.jweia.2020.104111. 
  46. Liu, T., Chen, Z., Zhou, X. and Zhang, J. (2018), "A CFD analysis of the aerodynamics of a high-speed train passing through a windbreak transition under crosswind", Eng. Appl. Comp. Fluid, 12(1), 137-151. https://doi.org/10.1080/19942060.2017.1360211. 
  47. Maleki, S., Burton, D. and Thompson, M.C. (2017), "Assessment of various turbulence models (ELES, SAS, URANS and RANS) for predicting the aerodynamics of freight train container wagons", J. Wind Eng. Ind. Aerod., 170, 68-80. https://doi.org/10.1016/j.jweia.2017.07.008. 
  48. Menter, F.R. (1996), "A comparison of some recent eddy-viscosity turbulence models", J. Fluid Eng .- T. ASME, 118(3), 514-519. https://doi.org/10.1115/1.2817788. 
  49. Menter, F.R. and Kuntz, M. (2004), "Adaptation of eddy-viscosity turbulence models to unsteady separated flow behind vehicles". (Eds., McCallen, R., Browand, F. and Ross, J.), The Aerodynamics of Heavy Vehicles: Trucks, Buses, and Trains. Lecture Notes in Applied and Computational Mechanics, vol 19. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-44419-0_30. 
  50. Menter, F.R., Kuntz, M. and Langtry, R. (2003), "Ten years of industrial experience with the SST turbulence model", Turbul. Heat Mass Transf., 4(1), 625-632. 
  51. Mohebbi, M. and Rezvani, M.A. (2018a), "Multi objective optimization of aerodynamic design of high speed railway windbreaks using Lattice Boltzmann Method and wind tunnel test results", Int. J. Rail Transp., 6(3), 183-201. https://doi.org/10.1080/23248378.2018.1463873. 
  52. Mohebbi, M. and Rezvani, M.A. (2018b), "Two-dimensional analysis of the influence of windbreaks on airflow over a high-speed train under crosswind using lattice Boltzmann method", P. I. Mech. Eng. F-J. Rai., 232(3), 863-872. https://doi.org/10.1177/0954409717699502. 
  53. Montenegro, P.A., Carvalho, H., Ortega, M., Millanes, F., Goicolea, J.M., Zhai, W. and Calcada, R. (2022a), "Impact of the train-track-bridge system characteristics in the runnability of high-speed trains against crosswinds-Part I: Running safety", J. Wind Eng. Ind. Aerod., 224, 104974. https://doi.org/10.1016/j.jweia.2022.104974. 
  54. Montenegro, P.A., Carvalho, H., Ribeiro, D., Calcada, R., Tokunaga, M., Tanabe, M. and Zhai, W.M. (2021), "Assessment of train running safety on bridges: A literature review", Eng. Struct., 241, 112425. https://doi.org/10.1016/j.engstruct.2021.112425. 
  55. Montenegro, P.A., Ribeiro, D., Ortega, M., Millanes, F., Goicolea, J.M., Zhai, W. and Calcada, R. (2022b), "Impact of the train-track-bridge system characteristics in the runnability of high-speed trains against crosswinds-Part II: Riding comfort", J. Wind Eng. Ind. Aerod., 224, 104987. https://doi.org/10.1016/j.jweia.2022.104987. 
  56. Neto, J., Montenegro, P.A., Vale, C. and Calcada, R. (2021), "Evaluation of the train running safety under crosswinds-a numerical study on the influence of the wind speed and orientation considering the normative Chinese hat model", Int. J. Rail Transp., 9(3), 204-231. https://doi.org/10.1080/23248378.2020.1780965. 
  57. Niu, J., Wang, Y. and Liu, F. (2020a), "Numerical study on the effect of damaged windows on aerodynamic characteristics of passenger trains under strong crosswind", P. I. Mech Eng. C-J. Mec., 234(15), 2994-3003. https://doi.org/10.1177/0954406220911396. 
  58. Niu, J., Wang, Y. and Zhou, D. (2019), "Effect of the outer windshield schemes on aerodynamic characteristics around the car-connecting parts and train aerodynamic performance", Mech. Syst. Signal. Pr., 130, 1-16. https://doi.org/10.1016/j.ymssp.2019.05.001. 
  59. Niu, J., Wang, Y., Li, R. and Liu, F. (2021), "Comparison of aerodynamic characteristics of high-speed train for different configurations of aerodynamic braking plates installed in intercar gap region", Flow Turbul. Combut., 6(1), 139-161. https://doi.org/10.1007/s10494-020-00196-0. 
  60. Niu, J., Wang, Y., Liu, F. and Chen, Z. (2020b), "Comparative study on the effect of aerodynamic braking plates mounted at the inter-carriage region of a high-speed train with pantograph and air-conditioning unit for enhanced braking", J. Wind Eng. Ind. Aerod., 206, 104360. https://doi.org/10.1016/j.jweia.2020.104360. 
  61. Niu, J., Wang, Y., Wu, D. and Liu, F. (2020c), "Comparison of different configurations of aerodynamic braking plate on the flow around a high-speed train", Eng. Appl. Comp. Fluid, 14(1), 655-668. https://doi.org/10.1080/19942060.2020.1756414. 
  62. Niu, J., Wang, Y., Zhang, L. and Yuan, Y. (2018b), "Numerical analysis of aerodynamic characteristics of high-speed train with different train nose lengths", Int. J. Heat Mass Tran., 127, 188-199. https://doi.org/10.1016/j.ijheatmasstransfer.2018.08.041. 
  63. Niu, J., Zhou, D. and Liang, X. (2017), "Experimental research on the aerodynamic characteristics of a high-speed train under different turbulence conditions", Exp. Therm. Fluid Sci., 80, 117-125. https://doi.org/10.1016/j.expthermflusci.2016.08.014. 
  64. Niu, J., Zhou, D. and Liang, X. (2018c), "Numerical investigation of the aerodynamic characteristics of high-speed trains of different lengths under crosswind with or without windbreaks", Eng. Appl. Comp. Fluid, 12(1), 195-215. https://doi.org/10.1080/19942060.2017.1390786. 
  65. Niu, J., Zhou, D. and Wang, Y. (2018a), "Numerical comparison of aerodynamic performance of stationary and moving trains with or without windbreak wall under crosswind", J. Wind Eng. Ind. Aerod., 182, 1-15. https://doi.org/10.1016/j.jweia.2018.09.011. 
  66. Pedro A.M., Rui C., Hermes C., Alexander B. and Ivan C. (2020), "Stability of a train running over the Volga river high-speed railway bridge during crosswinds", Struct. Infrastruct. E., 16(8), 1121-1137. https://doi.org/10.1080/15732479.2019.1684956. 
  67. Petrini, F. and Bontempi, F. (2011), "Estimation of fatigue life for long span suspension bridge hangers under wind action and train transit", Struct. Infrastruct. E., 7(7-8), 491-507. https://doi.org/10.1080/15732479.2010.493336. 
  68. Raghunathan, R.S., Kim, H.D. and Setoguchi, T. (2002), "Aerodynamics of high-speed railway train", Progress in Aerospace sciences, 38(6-7), 469-514. https://doi.org/10.1016/S0376-0421(02)00029-5. 
  69. Shur, M.L., Spalart, P.R., Strelets, M.K. and Travin, A.K. (2008), "A hybrid RANS-LES approach with delayed-DES and wall-modelled LES capabilities", Int. J. Heat Fluid Fl., 29(6), 1638-1649. https://doi.org/10.1016/j.ijheatfluidflow.2008.07.001. 
  70. Sicot, C., Deliancourt, F., Boree, J., Aguinaga, S. and Bouchet, J. (2018). "Representativeness of geometrical details during wind tunnel tests. Application to train aerodynamics in crosswind conditions", J. Wind Eng. Ind. Aerod., 177, 186-196. https://doi.org/10.1016/j.jweia.2018.01.040. 
  71. Sima, M., Eichinger, S., Blanco, A. and Ali, I. (2015), "Computational fluid dynamics simulation of rail vehicles in crosswind: application in norms and standards", P. I. Mech. Eng. F-J. Rai., 229(6), 635-643. https://doi.org/10.1177/0954409714551013. 
  72. Spalart, P.R., Deck, S., Shur, M.L., Squires, K.D., Strelets, M.K., and Travin, A. (2006), "A new version of detached-eddy simulation, resistant to ambiguous grid densities", Theor. Comp. Fluid Dyn., 20(3), 181. https://doi.org/10.1007/s00162-006-0015-0. 
  73. Sun, Z., Dai, H., Gao, H., Li, T. and Song, C. (2019). "Dynamic performance of high-speed train passing windbreak breach under unsteady crosswind", Vehicle Syst. Dyn., 57(3), 408-424. https://doi.org/10.1080/00423114.2018.1469777. 
  74. Tatsushi O., Tomohiro T., Nobuaki I., Minoru S. and Yuhei N. (2019), "Evaluation of the aerodynamic force on a railway vehicle in half-bank half-cut line sections", Quarterly Report of RTRI, 60(3), 208-213. https://doi.org/10.2219/rtriqr.60.3_208. 
  75. Tian, H.Q. (2019), "Review of research on high-speed railway aerodynamics in China", Transp. Saf.Environ., 1(1), 1-21. https://doi.org/10.1093/tse/tdz014. 
  76. Tomasini, G., Giappino, S. and Corradi, R. (2014), "Experimental investigation of the effects of embankment scenario on railway vehicle aerodynamic coefficients", J. Wind Eng. Ind. Aerod., 131, 59-71. https://doi.org/10.1016/j.jweia.2014.05.004. 
  77. Wang, J., Minelli, G., Miao, X., Zhang, J., Wang, T., Gao, G. and Krajnovic, S. (2021), "The effect of bogie positions on the aerodynamic behavior of a high-speed train: An IDDES study", Flow Turbul. Combut., 107(2), 257-282. https://doi.org/10.1007/s10494-020-00236-9. 
  78. Wang, M., Li, X. Z., Xiao, J., Zou, Q.Y. and Sha, H.Q. (2018b), "An experimental analysis of the aerodynamic characteristics of a high-speed train on a bridge under crosswinds", J. Wind Eng. Ind. Aerod., 177, 92-100. https://doi.org/10.1016/j.jweia.2018.03.021. 
  79. Wang, S., Avadiar, T., Thompson, M.C. and Burton, D. (2019), "Effect of moving ground on the aerodynamics of a generic automotive model: The DrivAer-Estate", J. Wind Eng. Ind. Aerod., 195, 104000. https://doi.org/10.1016/j.jweia.2019.104000. 
  80. Wang, S., Burton, D., Herbst, A., Sheridan, J. and Thompson, M.C. (2018d), "The effect of bogies on high-speed train slipstream and wake", J. Fluid Struct., 83, 471-489. https://doi.org/10.1016/j.jfluidstructs.2018.03.013. 
  81. Wang, T., Wu, F., Yang, M., Ji, P. and Qian, B. (2018c), "Reduction of pressure transients of high-speed train passing through a tunnel by cross-section increase", J. Wind Eng. Ind. Aerod., 183, 235-242. https://doi.org/10.1016/j.jweia.2018.11.001. 
  82. Wang, Y., Xia, H., Guo, W., Zhang, N. and Wang, S. (2018a), "Numerical analysis of wind field induced by moving train on HSR bridge subjected to crosswind", Wind Struct., 27(1), 29-40. https://doi.org/10.12989/was.2018.27.1.029. 
  83. Xia, C., Wang, H., Shan, X., Yang, Z. and Li, Q. (2017), "Effects of ground configurations on the slipstream and near wake of a high-speed train", J. Wind Eng. Ind. Aerod., 168, 177-189. https://doi.org/10.1016/j.jweia.2017.06.005. 
  84. Xiao, L., Xiao, Z., Duan, Z. and Fu, S. (2015), "Improved-delayed-detached-eddy simulation of cavity-induced transition in hypersonic boundary layer", Int. J. Heat Fluid Fl., 51, 138-150. https://doi.org/10.1016/j.ijheatfluidflow.2014.10.007. 
  85. Xu, R., Wu, F., Zhong, M., Li, X. and Ding, J. (2020), "Numerical investigation on the aerodynamics and dynamics of a high-speed train passing through a tornado-like vortex", J. Fluid Struct., 96(7), 103042. https://doi.org/10.1016/j.jfluidstructs.2020.103042. 
  86. Xu, Y.L., Zhang, N. and Xia, H. (2004), "Vibration of coupled train and cable-stayed bridge systems in cross winds", Eng. Struct., 26(10), 1389-1406. https://doi.org/10.1016/j.engstruct.2004.05.005. 
  87. Yang, W., Deng, E., He, X., Luo, L., Zhu, Z., Wang, Y. and Li, Z. (2021), "Influence of wind barrier on the transient aerodynamic performance of high-speed trains under crosswinds at tunnel-bridge sections", Eng. Appl. Comp. Fluid, 15(1), 727-746. https://doi.org/10.1080/19942060.2021.1918257. 
  88. Yao, Z., Zhang, N., Chen, X., Zhang, C., Xia, H. and Li, X. (2020), "The effect of moving train on the aerodynamic performances of train-bridge system with a crosswind", Eng. Appl. Comp. Fluid, 14(1), 222-235. https://doi.org/10.1080/19942060.2019.1704886. 
  89. Zampieri, A., Rocchi, D., Schito, P. and Somaschini, C. (2020), "Numerical-experimental analysis of the slipstream produced by a high speed train", J. Wind Eng. Ind. Aerod., 196, 104022. https://doi.org/10.1016/j.jweia.2019.104022. 
  90. Zhai, W., Yang, J., Li, Z. and Han, H. (2015), "Dynamics of high-speed train in crosswinds based on an air-train-track interaction model", Wind Struct., 20(2), 143-168. https://doi.org/10.12989/was.2015.20.2.143. 
  91. Zhang, J., Zhang, M., Li, Y. and Fang, C. (2019), "Aerodynamic effects of subgrade-tunnel transition on high-speed railway by wind tunnel tests", Wind Struct., 28(4), 203-213. https://doi.org/10.12989/was.2019.28.4.203. 
  92. Zhang, L., Yang, M.Z. and Liang, X.F. (2018), "Experimental study on the effect of wind angles on pressure distribution of train streamlined zone and train aerodynamic forces", J. Wind Eng. Ind. Aerod., 174, 330-343. https://doi.org/10.1016/j.jweia.2018.01.024. 
  93. Zhang, T., Xia, H. and Guo, W.W. (2013), "Analysis on running safety of train on bridge with wind barriers subjected to cross wind", Wind Struct., 17(2), 203-225. https://doi.org/10.12989/was.2013.17.2.203. 
  94. Zhang, Z. and Zhou, D. (2013), "Wind tunnel experiment on aerodynamic characteristic of streamline head of high speed train with different head shapes", J. Cent. South Univ. (Science and Technology), 44(6), 2603-2608. https://doi.org/1672-7207(2013)06-2603-06. 
  95. Zhao, H. and Zhai, W. (2015), "Effect of noise barrier on aerodynamic performance of high-speed train in crosswind", Wind Struct., 20(4), 509-525. https://doi.org/10.12989/was.2015.20.4.509. 
  96. Zhao, H., Zhai, W. and Chen, Z. (2015), "Effect of noise barrier on aerodynamic performance of high-speed train in crosswind", Wind Struct, 20(4), 509-525. https://doi.org/10.12989/was.2015.20.4.509.