DOI QR코드

DOI QR Code

A Simulation Study of Renewable Power based Green Hydrogen Mobility Energy Supply Chain Systems

재생에너지 기반 청정 수소 운송 에너지 시스템 모사 연구

  • Lee, Joon Heon (Division of Creative Conversion Engineering, Dongguk University, Gyeongju Campus) ;
  • Ryu, Jun-Hyung (Division of Creative Conversion Engineering, Dongguk University, Gyeongju Campus)
  • 이준헌 (동국대학교 경주캠퍼스 창의융합공학부) ;
  • 류준형 (동국대학교 경주캠퍼스 창의융합공학부)
  • Received : 2021.08.18
  • Accepted : 2021.11.02
  • Published : 2022.02.01

Abstract

Since the Paris climate agreement, reducing greenhouse gases has been the most important global issue. In particular, it is necessary to reduce fossil fuels in the mobility sector, which accounts for a significant portion of total greenhouse gas emissions. In this paper, we investigated the economic feasibility of green mobility energy supply chains, which supply hydrogen as fuel to hydrogen vehicles based on electricity from renewable energy sources. The design and operation costs were analyzed by evaluating nine scenarios representing various combinatorial possibilities such as renewable energy generation, hydrogen production through water electrolytes, hydrogen storage and hydrogen refueling stations. Simulation calculations were made using Homer Pro, widely used commercial software in the field. The experience gained in this study could be further utilized to construct actual hydrogen energy systems.

파리 기후 협약 이후 온실 가스 감축은 전세계적으로 가장 중요한 문제이다. 특히 상당한 온실 가스를 배출하는 교통 운송 부문의 화석 연료 감축이 시급하다. 본 논문에서는 이에 대한 대안으로 재생에너지원에서 생산된 전기 에너지로 수소를 생산하여 수소 자동차에 연료로 공급하는 그린 모빌리티 에너지 시스템의 경제성을 검토하였다. 시스템 설계에 필요한 재생에너지 발전, 수전해 통한 수소 생산, 수소 저장과 충전소 등 여러가지 결정사항들에 대해 9 가지 시나리오를 구성하여 그에 대한 최적 설계 및 운영 비용을 분석하였다. 본 연구에서 얻어진 경험은 현실적 수소 에너지 시스템을 구축하는데 활용될 수 있을 것이다.

Keywords

Acknowledgement

이 논문은 2021년도 한국산업기술평가원의 지원(No. 2021-4000000010)과 한국연구재단의 기초연구사업(No. 2020R1I1-A3A0403800)의 지원을 받음. 류준형은 2020년 동국대학교 DG 선진연구강화사업의 지원을 받았음.

References

  1. https://www.mofa.go.kr/www/wpge/m_20150/contents.do.
  2. https://www.kotems.or.kr/app/kotems/forward?pageUrl=kotems/ptl/emission/internal/KotemsPtlEmissionInternalEmissionSectorLs&topmenu1=01&topmenu2=02&topmenu3=02
  3. Ajanovic, A. and Haas, R., "Economic Prospects and Policy Framework for Hydrogen as Fuel in the Transport Sector," Energy Policy, 123, 280-288(2018). https://doi.org/10.1016/j.enpol.2018.08.063
  4. Manoharan, Y., Hosseini, S. E., Butler, B., Alzhahrani, H., Senior, B. T. F., Ashuri, T. and Krohn, J., "Hydrogen Fuel Cell Vehicles; Current Status and Future Prospect," Appl. Sci., 9, 2296(2019). https://doi.org/10.3390/app9112296
  5. Olatomiwa, L., Mekhilef, S., Ismail, M., S. and Moghavvemi, M., "Energy Management Strategies in Hybrid Renewable Energy Systems: A Review," Renew. Sust. Energ. Rev., 62, 821-835(2016). https://doi.org/10.1016/j.rser.2016.05.040
  6. Karakoulidis, K., Mavridis, K., Bandekas, D Sterner, V., Adoniadis, P., Potolias, C. and Vordos, N., "Techno-economic Analysis of a Stand-alone Hybrid Photovoltaic-diesel-battery-fuel Cell Power System," Renew. Energy, 36, 2238-2244(2011). https://doi.org/10.1016/j.renene.2010.12.003
  7. Ashourian, M., Cherati, S., Zin, A. M., Niknam, N., Mokhtar, A. and Anwari, M., "Optimal Green Energy Management for Island Resorts in Malaysia," Renew. Energy, 51, 36-45(2013). https://doi.org/10.1016/j.renene.2012.08.056
  8. Ajlan, A., Tan, C. W. and Abdilahi, A. M., "Assessment of Environmental and Economic Perspectives for Renewable-based Hybrid Power System in Yemen," Renew. Sust. Energ. Rev., 75, 559-570 (2017). https://doi.org/10.1016/j.rser.2016.11.024
  9. Odou, O. D. T., Bhandari, R. and Adamou, R., "Hybrid Off-grid Renewable Power System for Sustainable Rural Electrification in Benin," Renew. Energy, 145, 1266-1279(2020). https://doi.org/10.1016/j.renene.2019.06.032
  10. Quarton, C., J. and Samsatli S., "Power-to-gas for Injection Into the Gas Grid: What Can We Learn From Real-life Projects, Economic Assessments and Systems Modelling?," Renew. Sust. Energ. Rev., 98, 302-316(2018). https://doi.org/10.1016/j.rser.2018.09.007
  11. Thema, M., Bauer, F. and Sterner, M., "Power-to-Gas: Electrolysis and Methanation Status Review," Renew. Sust. Energ. Rev., 112, 775-787(2019). https://doi.org/10.1016/j.rser.2019.06.030
  12. Silva, S. B., Severino, M. M. and De Oliveira, M., "A Standalone Hybrid Photovoltaic, Fuel Cell and Battery System: A Case Study of Tocantins, Brazil," Renew. Energy, 57, 384-389(2013). https://doi.org/10.1016/j.renene.2013.02.004
  13. Karellas, S. and Tzouganatos, N., "Comparison of the Performance of Compressed-air and Hydrogn Energy Storage Systems: Karpathos Island Case Study," Renew. Sust. Energ. Rev., 29, 865-882(2014). https://doi.org/10.1016/j.rser.2013.07.019
  14. Chade, D., Miklis, T. and Dvorak, D., "Feasibility Study of Wind-to-hydrogen System for Arctic Remote Locations - Grimsey Island Case Study," Renew. Energy, 76, 204-211(2015). https://doi.org/10.1016/j.renene.2014.11.023
  15. Rezk, H. and Dousoky, G. M., "Technical and Economic Analysis of Different Configurations of Stand-alone Hybrid RenewablePower Systems - A Case Study," Renew. Sust. Energ. Rev., 62, 941-953(2016). https://doi.org/10.1016/j.rser.2016.05.023
  16. Duman, A. C. and Guler, O., "Techno-economic Analysis of Off-grid PV/wind/fuel Cell Hybrid System Combinations with a Comparison of Regularly and Seasonally Occupied Households," Sustain. Cities Soc., 42, 107-126(2018). https://doi.org/10.1016/j.scs.2018.06.029
  17. Razmjoo, A., Kaigutha, L. G., Rad, M. V., Marzband, M., Davarpanah, A. and Denai, M., "A Technical Analysis Investigating Energy Sustainability Utilizing Reliable Renewable Energy Sources to Reduce CO2 Emissions in a High Potential Area," Renew. Energy, 164, 46-57(2021). https://doi.org/10.1016/j.renene.2020.09.042
  18. https://www.homerenergy.com/.
  19. Sinha, S. and Chandel, S. S., "Review of Software Tools for Hybrid Renewable Energy Systems," Renew. Sust. Energ. Rev., 32, 192- 205(2014). https://doi.org/10.1016/j.rser.2014.01.035
  20. Rohani, A., Mazlumi, K. and Kord, H., "Modeling of a Hybrid Power System for Economic Analysis and Environmental Impact in HOMER," 2010 18th Iranian Conference on Electrical Engineering, May, Isfahan(2010)
  21. Dursun, B., "Determination of the Optimum Hybrid Renewable Power Generating Systems for Kavakli Campus of Kirklareli University, Turkey," Renew. Sust. Energ. Rev., 16, 6183-6190(2012). https://doi.org/10.1016/j.rser.2012.07.017
  22. Li, C., Ge, X., Zheng, Y., Xu, C., Ren, Y., Song, C. and Yang, C., "Techno-economic Feasibility Study of Autonomous Hybrid Wind/PV/battery Power System for a Household in Urumqi, China," Energy, 55, 263-272(2013). https://doi.org/10.1016/j.energy.2013.03.084
  23. Dawood, F., Shafiullah, G. and Anda, M., "Stand-Alone Micro-grid with 100% Renewable Energy: A Case Study with Hybrid Solar PV-Battery-Hydrogen," Sustainability, 12, 2041(2020). https://doi.org/10.3390/su12052041
  24. Kalinci, Y., Hepbasli, A. and Dincer, I., "Techno-economic Analysis of a Stand-alone Hybrid Renewable Energy System with Hydrogen Production and Storage Options," Int. J. Hydrog. Energy, 40, 7652-7664(2015). https://doi.org/10.1016/j.ijhydene.2014.10.147
  25. Fazelpour, F., Soltani, N. and Rosen, M. A., "Economic Analysis of Standalone Hybrid Energy Systems for Application in Tehran, Iran," Int. J. Hydrog. Energy, 41, 7732-7743(2016). https://doi.org/10.1016/j.ijhydene.2016.01.113
  26. Isa, N. M., Das, H. S., Tan, C. W., Yatim, A. H. M. and Lau, K. Y., "A Techno-economic Assessment of a Combined Heat and Power Photovoltaic/fuel Cell/battery Energy System in Malaysia Hospital," Energy, 112, 75-90(2016). https://doi.org/10.1016/j.energy.2016.06.056
  27. Singh, A., Baredar, P. and Gupta, B., "Techno-economic Feasibility Analysis of Hydrogen Fuel Cell and Solar Photovoltaic Hybrid Renewable Energy System for Academic Research Building," Energy Conv. Manag., 145, 398-414(2017). https://doi.org/10.1016/j.enconman.2017.05.014
  28. Das, H. S., Tan, C. W., Yatim, A. and Lau, K. Y., "Feasibility Analysis of Hybrid Photovoltaic/battery/fuel Cell Energy System for an Indigenous Residence in East Malaysia," Renew. Sust. Energ. Rev., 76, 1332-1347(2017). https://doi.org/10.1016/j.rser.2017.01.174
  29. Islam, M. S., "A Techno-economic Feasibility Analysis of Hybrid Renewable Energy Supply Options for a Grid-connected Large Office Building in Southeastern Part of France," Sustain. Cities Soc., 38, 492-508(2018). https://doi.org/10.1016/j.scs.2018.01.022
  30. Rezk, H., Sayed, E. T., Al-Dhaifallah, M., Obaid, M., El-Sayed, A. H. M., Abdelkareem, M. A. and Olabi, A. G., "Fuel Cell as an Effective Energy Storage in Reverse Osmosis Desalination Plant Powered by Photovoltaic System," Energy, 175, 423-433(2019). https://doi.org/10.1016/j.energy.2019.02.167
  31. Arevalo, P., Benavides, D., Lata-Garcia J. and Jurado, F., "Energy Control and Size Optimization of a Hybrid System (photovoltaic-hidrokinetic) Using Various Storage Technologies," Sustain. Cities Soc., 52, 101773(2020). https://doi.org/10.1016/j.scs.2019.101773
  32. Vendoti, S., Muralidhar, M. and Kiranmayi, R., "Modelling and Optimization of An Off-grid Hybrid Renewable Energy System for Electrification in a Rural Areas," Energy Rep., 6, 594-604(2020). https://doi.org/10.1016/j.egyr.2020.01.013
  33. Ekren, O., Canbaz, C. H. and Guvel, C. B., "Sizing of a Solar-wind Hybrid Electric Vehicle Charging Station by Using HOMER software," J. Clean Prod., 279, 123615(2021). https://doi.org/10.1016/j.jclepro.2020.123615
  34. Baek, J. H., Han, S. K., Kim, D. S., Han, D. H., Lee, H. S. and Cho, S. H., "Optimal Sizing Method of Distributed Energy Resources for a Stand-alone Microgrid by using Reliability-based Genetic Algorithm," KIEE, 66, 757-764(2017). https://doi.org/10.5370/KIEE.2017.66.5.757
  35. Buttler, A. and Spliethoff, H., "Current Status of Water Electrolysis for Energy Storage, Grid Balancing and Sector Coupling via Power-to-gas and Power-to-liquids: A Review," Renew. Sust. Energ. Rev., 82, 2440-2454(2018). https://doi.org/10.1016/j.rser.2017.09.003
  36. Hawng, G. J. and Choi, H. S., "Hydrogen Production Systems through Water Electrolysis," Membr. J., 27, 477-486(2017). https://doi.org/10.14579/MEMBRANE_JOURNAL.2017.27.6.477
  37. Yu, T. J., "Total Registered Moter Vehicles," KOTSA, (2020).
  38. "Average Mileage of Automobile," KOTSA, 54(2018).
  39. https://www.hyundai.com/kr/ko/e/vehicles/nexo/spec.
  40. https://data.kma.go.kr/cmmn/main.do.
  41. Charabi, Y. and Abdul-Wahab, S., "Wind Turbine Performance Analysis for Energy Cost Minimization," Renew Wind Water Sol, 7, 5(2020). https://doi.org/10.1186/s40807-020-00062-7
  42. https://en.wind-turbine-models.com/.
  43. https://www.homerenergy.com/products/pro/docs/latest/index.html.
  44. Manwell, J. F., McGowan, J. G., Rogers, A. L., Wind Energy Explained: Theory, Design and Application, 2nd ed., Wiley, USA, NJ (2009).
  45. Jahangir, M. H., Shahsavari, A. and Rad, M. A. V., "Feasibility Study of a Zero Emission PV/Wind Turbine/Wave Energy Converter Hybrid System for Stand-alone Power Supply: A Case Study," J. Clean Prod., 262, 121250(2020). https://doi.org/10.1016/j.jclepro.2020.121250
  46. Lata-Garcia, J., Jurado, F., Fernandez-Ramirez, L. M. and Sanchez-Sainz, H., "Optimal Hydrokinetic Turbine Location and Techno-economic Analysis of a Hybrid System Based on Photovoltaic/hydrokinetic/hydrogen/battery," Energy, 159, 611-620(2018). https://doi.org/10.1016/j.energy.2018.06.183
  47. Gokcek, M. and Kale, C., "Optimal Design of a Hydrogen Refuelling Station (HRFS) Powered by Hybrid Power System," Energy Conv. Manag., 161, 215-224(2018). https://doi.org/10.1016/j.enconman.2018.02.007
  48. Fragiacomo, P. and Genovese, M., "Numerical Simulations of the Energy Performance of a PEM Water Electrolysis Based Highpressure Hydrogen Refueling Station," Int. J. Hydrog. Energy, 45, 27457-27470(2020). https://doi.org/10.1016/j.ijhydene.2020.07.007
  49. http://www.khydi.or.kr/sub/situation02.html.
  50. https://ecos.bok.or.kr/EIndex.jsp.