DOI QR코드

DOI QR Code

Development of Black Liquor Multiple-effect-evaporation Process Model to Predict Steam Savings

스팀 절감량 예측을 위한 흑액 다중 효용 증발 공정 모델 개발

  • Kim, Yurim (Green Materials and Processes R&D Group, Korea Institute of Industrial Technology) ;
  • Lim, Jonghun (Green Materials and Processes R&D Group, Korea Institute of Industrial Technology) ;
  • Choi, Yeongryeol (Green Materials and Processes R&D Group, Korea Institute of Industrial Technology) ;
  • Kim, Taebok (Project Part, MOORIM P&P Co.) ;
  • Park, Hansin (Project Part, MOORIM P&P Co.) ;
  • Cho, Hyungtae (Green Materials and Processes R&D Group, Korea Institute of Industrial Technology) ;
  • Kim, Junghwan (Green Materials and Processes R&D Group, Korea Institute of Industrial Technology)
  • 김유림 (한국생산기술연구원 친환경재료공정연구그룹) ;
  • 임종훈 (한국생산기술연구원 친환경재료공정연구그룹) ;
  • 최영렬 (한국생산기술연구원 친환경재료공정연구그룹) ;
  • 김태복 (무림P&P(주) 프로젝트부) ;
  • 박한신 (무림P&P(주) 프로젝트부) ;
  • 조형태 (한국생산기술연구원 친환경재료공정연구그룹) ;
  • 김정환 (한국생산기술연구원 친환경재료공정연구그룹)
  • Received : 2021.06.04
  • Accepted : 2021.08.30
  • Published : 2022.02.01

Abstract

This study developed the black liquor evaporation process models using the multiple-effect-evaporator according to the number of effects to predict steam consumption. The developed models were divided into the black liquor preheating and evaporation processes, and a virtual reboiler was added to predict steam consumption. In simulation results, the steam consumption in the double-effect-evaporator was decreased by 48.9 %, and as the number of effects increased, the steam consumption was decreased. Finally, the steam consumption in the octuple-effect-evaporator was decreased by 61.2 %. Also, this study suggests a strategy for deriving the optimal number of effects in the process by analyzing the latent heat recovered from the saturated vapor produced in the multiple-effect-evaporator and the amount of saturated vapor produced by each effect.

본 연구에서는 흑액 증발공정에 소비되는 스팀의 절감량을 예측하기 위해 증발기 수에 따른 다중 효용 증발공정 모델을 개발하였다. 개발한 공정 모델은 흑액의 예열 및 증발 과정으로 구성되어 있고, 스팀 사용량을 예측하기 위해 가상의 재비기가 추가되었다. 시뮬레이션 결과, 2중 효용 증발기에서 스팀 사용량은 48.9% 감소하였고, 증발기 수가 증가함에 따라 스팀 사용량이 감소하여 8중 효용 증발기에서 최대 76.5% 감소함을 확인하였다. 시뮬레이션 결과를 증발기 수에 따른 포화증기의 잠열 회수량, 스팀 사용량, 각 증발기의 포화증기 생산량으로 분석하여 최적의 증발기 수 도출을 위한 방안을 제시하였다.

Keywords

Acknowledgement

본 논문은 한국생산기술연구원 "발전용 회수보일러 ash 제거 시스템 실시간 최적화를 위한 지능화 모델 및 실증화 기술 개발(JH-21-0006)" 및 "기업체 에너지공정 최적화 지원사업(EM-21-0022, IR-21-0029, IZ-21-0052)"의 지원으로 수행한 연구입니다.

References

  1. Kim, C., Lee, J., Park, S., and Moon, S., "Global Trends and Prospects of Black Liquor as Bioenergy," J. of Korea TAPPLI, 51(5), 3-15(2019).
  2. Ek, M., Gellerstedt, G. and Henriksson, G., Pulp and Paper Chemistry and Technology, 2nd Ed., De Gruyter, 121-149, 429-460 (2017).
  3. Maakala, V., Jarvinen, M. and Vuorinen, V., "Computational Fluid Dynamics Modeling and Experimental Validation of Heat Transfer and Fluid Flow in the Recovery Boiler Superheater Region," Appl. Therm. Eng., 139, 222-238(2018). https://doi.org/10.1016/j.applthermaleng.2018.04.084
  4. Singh, R. and Heldman, D., Introduction to Food Engineering, 5th ed., 1-861(2014).
  5. Jaishree, V., "Optimization of a Multiple Effect Evaporator System," Ph.D. Dissertation, Department of Chemical Engineering National Institute of Technology, Rourkela (2010).
  6. Verma, O. P., Mohammed, T. H., Mangal S. and Manik G., "Minimization of Energy Consumption in Multi-stage Evaporator System of Kraft Recovery Process Using Interior-point Method," Energy, 129, 148-157(2017). https://doi.org/10.1016/j.energy.2017.04.093
  7. Bhargava, R., Khanam, S., Mohanty, B. and Ray, A. K., "Simulation of Flat Falling Film Evaporator System for Concentration of Black Liquor," J. Compchemeng., 32(12), 3213-3223(2008).
  8. Ren, W., "Development of a Free Lime Monitoring System for the Kraft Recovery Process Development of a Free Lime Monitoring System for the Kraft," Master Dissertation, Department of Chemical Engineering and Applied Chemistry University of Toronto (2014).
  9. Tran, H. and Vakkilainnen, E. K., "The Kraft Chemical Recovery Process," TAPPI Kraft Recovery Course, 1-8(2012).
  10. Choi, Y., An, N., Moon, I. and Kim, J., "Energy Optimization via Process Modification To Maximize Economic Feasibility of the Butane Gas-Splitting Process," Ind. Eng. Chem. Res., 59(40), 18019-18027(2020). https://doi.org/10.1021/acs.iecr.0c02430
  11. Systems, C., Duke University Construction & Design Standards, Duke university, 1-6 (2017).
  12. Lim, J., Choi, Y., Kim, G. and Kim, J., "Modeling of the Wet Flue Gas Desulfurization System to Utilize Low-grade Limestone," Korean Journal of Chemical Engineering, 37, 2085-2093 (2020). https://doi.org/10.1007/s11814-020-0639-6
  13. Rowell, R. M., Handbook of Wood Chemistry and Wood Composites, 2nd ed., CRC Press (2012).
  14. Lim, J. and Kim, J., "Optimization of a Wet Flue Gas Desulfurization System Considering Low-grade Limestone and Waste Oyster Shell," J. Korea Soc. Waste Manag., 37(4), 263-274(2020). https://doi.org/10.9786/kswm.2020.37.4.263
  15. Choi, Y., Kim, J. and Moon, I., "Simulation and Economic Assessment of Using H2O2 Solution in Wet Scrubber for Large Marine Vessels," Energy, 194(2020).
  16. Gebreyohannes, S., Neely, B. and Gasem, K., "Generalized Nonrandom Two-Liquid (NRTL) Interaction Model Parameters for Predicting Liquid-Liquid Equilibrium Behavior," Ind. Eng. Chem. Res., 53(31), 12445-12454(2014). https://doi.org/10.1021/ie501699a
  17. Joo, H., Hwang, I. and Kwak, H., "Development of Multi Effect Distillation for Solar Thermal Seawater Desalination System," J. Korean Sol. Energy Soc., 31(1), 1-7(2011). https://doi.org/10.7836/kses.2011.31.1.001
  18. Jeong, Y., Jung, J., Lee, U., Yang, C. and Han, C., "Techno-economic Analysis of Mechanical Vapor Recompression for Process Integration of Post-combustion CO2 Capture with Downstream Compression," Chem. Eng. Res. Des., 104, 247-255(2015). https://doi.org/10.1016/j.cherd.2015.08.016