DOI QR코드

DOI QR Code

Buckling analysis of thin-walled circular hollow section members with and without longitudinal stiffeners

  • Cuong, Bui H. (Department of Building and Industrial Construction, Hanoi University of Civil Engineering)
  • Received : 2021.04.13
  • Accepted : 2021.10.22
  • Published : 2022.01.25

Abstract

Numerical solutions for the linear buckling behavior of thin-walled circular hollow section members (CHS) with and without longitudinal stiffeners are presented using the semi-analytical finite strip method (SAFSM) which is developed based on Marguerre's shallow shell theory and Kirchhoff's assumption. The formulation of 3-nodal line finite strip is presented. The CHS members subjected to uniform axial compression, uniform bending, and combination of compression and bending. The buckling behavior of CHS is investigated through buckling curves which relate buckling stresses to lengths of the member. Effects of longitudinal stiffeners are studied with the change of its dimensions, position, and number.

Keywords

References

  1. A dany, S. and Schafer, B.W. (2006), "Buckling mode decomposition of single-branched open cross section members via finite strip method: Derivation", Thin Wall. Struct., 44(5), 563-584. https://doi.org/10.1016/j.tws.2006.03.013.
  2. A dany, S. and Schafer, B.W. (2006), "Buckling mode decomposition of single-branched open cross-section members via finite strip method: Application and examples", Thin Wall. Struct., 44(5), 585-600. https://doi.org/10.1016/j.tws.2006.03.014.
  3. Basaglia, C., Camotim, D. and Silvestre, N. (2019), "GBT-based buckling analysis of steel cylindrical shells under combinations of compression and external pressure", Thin Wall. Struct., 144, 106274. https://doi.org/10.1016/j.tws.2019.106274.
  4. Beregszaszi, Z. and A dany, S. (2019), "Modal buckling analysis of thin-walled members with rounded corners by using the constrained finite strip method with elastic corner elements", Thin Wall. Struct., 142, 414-425. https://doi.org/10.1016/j.tws.2019.04.058.
  5. Bradford, M.A. and Azhari, M. (1995), "Buckling of plates with different end conditions using the finite strip method", Comput. Struct., 56(1), 75-83. https://doi.org/10.1016/0045-7949(94)00528-B.
  6. Bui, H.C. (2009), "Buckling analysis of thin-walled sections under general loading conditions", Thin Wall. Struct., 47, 730-739. https://doi.org/10.1016/j.tws.2008.12.003.
  7. Bui, H.C. (2012), "Semi-analytical finite strip method based on the shallow shell theory in buckling analysis of cold-formed sections", Thin Wall. Struct., 50(1), 141-146. https://doi.org/10.1016/j.tws.2011.09.005.
  8. Bui, H.C. (2013), "Buckling of thin-walled members analyzed by Mindlin-Reissner finite strip", Struct. Eng. Mech., 48(1), 77-91. https://doi.org/10.12989/sem.2013.48.1.077.
  9. Bui, H.C. and Rondal, J. (2008), "Buckling analysis of thin-walled sections by semi-analytical Mindlin-Reissner finite strips-A treatment of drilling rotation problem", Thin Wall. Struct., 46, 646-652. doi.org/10.1016/ j.tws.2007.12.003.
  10. Cheung, Y.K. (1976), Finite Strip Method in Structural Analysis, Pergamon Press, New York.
  11. Chu, X.T., Ye, Z.M., Kettle, R. and Li, L.Y. (2005), "Buckling behaviour of coldformed channel sections under uniformly distributed loads", Thin Wall. Struct., 43, 531-542. https://doi.org/10.1016/j.tws.2004.10.002.
  12. Dawe, D.J. (1977), "Finite strip buckling analysis of curved plate assemblies under biaxial loading", Int. J. Solid. Struct., 13, 1141-1155. https://doi.org/10.1016/0020-7683(77)90083-X.
  13. Donnel, L.H. and Wan, C.C. (1950), "Effect of imperfections on the buckling of thin cylinders and columns under axial compression", J. Appl. Mech., ASME, 17(1), 73-83. https://doi.org/10.1115/1.4010060.
  14. Donnell, L.H. (1935), "A new theory for the buckling of thin cylinders under axial compression and bending", Trans. ASME, 56, 795-806.
  15. Ghannadpour, S.A.M., Ovesy, H.R. and Zia-Dehkordi E. (2015), "Buckling and post-buckling behaviour of moderately thick plates using an exact finite strip", Comput. Struct., 147, 172-180. https://doi.org/10.1016/j.compstruc.2014.09.013.
  16. Hancock, G.J. (1978), "Local distortional and lateral buckling of I-beams", J. Struct. Div., ASCE, 104(11), 1787-1798. https://doi.org/10.1061/JSDEAG.0005035.
  17. Hancock, G.J. and Pham, C.H. (2013), "Shear buckling of channel sections with simply supported ends using the semi-analytical finite strip method", Thin Wall. Struct., 71, 72-80. https://doi.org/10.1016/j.tws.2013.05.004.
  18. Hancock, G.J. and Pham, C.H. (2015), "Buckling analysis of thin-walled sections under localised loading using the semianalytical finite strip method", Thin Wall. Struct., 86, 35-46. https://doi.org/10.1016/j.tws.2014.09.017
  19. Li, Z. and Schafer, B.W. (2010), "Application of the finite strip method in cold-formed steel member design", J. Constr. Steel Res., 66(8-9), 971-980. https://doi.org/10.1016/j.jcsr.2010.04.001.
  20. Majid, K., Davood, P. and Shapour M. (2016), " Buckling analysis of laminated composite cylindrical shell subjected to lateral displacement-dependent pressure using semi-analytical finite strip method", Steel Compos. Struct., 22(2), 301-321. https://doi.org/10.12989/scs.2016.22.2.301.
  21. Marguerre, K. (1950), Knick-und Beulvorgangne-Einfuhrung in die Theorie der elastichen Stabilitat, Chapitre VI de: Neuere Festigkeitsprobleme des Ingenieurs, Herausgegeben von K. Marguerre, Springer-Verlag.
  22. NASA-National Aeronautics and Space Administration (2019), Buckling of Thin Walled Circular Cylinders, Technical report NASA/SP-8007, 2nd Revision.
  23. Nguyen, V.V., Hancock, G.J. and Pham, C.H. (2017), "Analyses of thin-walled sections under localised loading for general end boudary conditions-Part 1: Pre-buckling", Thin Wall. Struct., 119, 956-972. https://doi.org/10.1016/j.tws.2017.01.010.
  24. Nguyen, V.V., Hancock, G.J. and Pham, C.H. (2017), "Analyses of thin-walled sections under localised loading for general end boudary conditions-Part 2: Buckling", Thin Wall. Struct., 119, 973-987. https://doi.org/10.1016/j.tws.2017.01.008.
  25. Nguyen, V.V., Hancock, G.J. and Pham, C.H. (2017), "New developments in the direct strength method (DSM) for the design of cold-formed steel sections under localised loading", Steel Constr., 10(3), 227-233. https://doi.org/10.1002/stco.201710028.
  26. Nguyen, V.V., Hancock, G.J. and Pham, C.H. (2020), "Consistent and simplified direct strength method for design of cold-formed steel structural members under localised loading", J. Struct. Eng., 146(6), 04020090. https://doi.org/10.1061/(ASCE)ST.1943-541X.0002609.
  27. Ovesy, H.R. and Ghannadpour, S.A.M. (2009), "An exact finite strip for the calculation of relative post-buckling stiffness of isotropic plates", Struct. Eng. Mech., 31(2), 181-210. https://doi.org/10.12989/sem.2009.31.2.181
  28. Plank, R.J. and Wittrick, W.H. (1974), "Buckling under combined loading of thin, flat-walled structures by a complex finite strip method", Int. J. Numer. Meth. Eng., 8(2), 323-339. https://doi.org/10.1002/nme.1620080211.
  29. Schafer, B.W. (2012), CUFSM4.05-Finite Strip Buckling Analysis of Thin-Walled Members, Johns Hopkins University, Baltimore, USA.
  30. Seide, P. and Weingarten, W.I. (1961), "On the buckling of circular cylindrical shells under pure bending", J. Appl. Mech. Div., ASME, 28(1), 112-116. https://doi.org/10.1115/1.3640420.
  31. Sherafat, M.H., Ghannadpour, S.A.M. and Ovesy, H.R. (2013), "Pressure loading, end- shortening and through- thickness shearing effects on geometrically nonlinear response of composite laminated plates using higher order finite strip method", Struct. Eng. Mech., 45(5), 677-691. https://doi.org/10.12989/sem.2013.45.5.677.
  32. Silvestre, N. (2007), "Generalised beam theory to analyse the buckling behaviour of circular cylindrical shells and tubes", Thin Wall. Struct., 45(2), 185-198. https://doi.org/10.1016/j.tws.2007.02.001.
  33. Timoshenko, S.P. and Gere, J.M. (1961), Theory of Elastic Stability, McGraw-Hill, New York.
  34. Von Karman, T. and Tsien, H.S. (1941), "The buckling of thin cylindrical shells under axial compression", J. Aeronaut. Sci., 8(6), 303-312. https://doi.org/10.2514/8.10722.