DOI QR코드

DOI QR Code

최적의 Bluetooth GFSK 신호 수신을 위한 Viterbi 기반 저복잡도 FSM 설계

Design of Low-Complexity FSM based on Viterbi for Optimum Bluetooth GFSK Signal Receiver

  • 권택원 (건양대학교 융합IT학과) ;
  • 이규만 (건양대학교 기업소프트웨어학부)
  • Kwon, Taek-Won (Department of Convergence Information Technology, Konyang University) ;
  • Lee, Kyu-Man (Department of Enterprise Software, Konyang University)
  • 투고 : 2021.11.26
  • 심사 : 2022.01.20
  • 발행 : 2022.01.28

초록

Bluetooth는 다양한 소비자 전자 장치 간의 연결 매체로 널리 사용되는 공통 무선 기술이다. Bluetooth 수신기는 주로 신호 대 잡음비 성능 개선을 위해 일반적으로 Viterbi 알고리즘을 채택하지만 전송단에서의 irrational modulation index(무리수 변조 지수)로 수신단의 지속적인 탐색 및 추정이 필요하며 이를 위한 복잡한 하드웨어와 계산을 요구한다. 본 논문에서는 이러한 복잡도 문제를 해결하기 위해 비동기 최대 우도 추정(MLE, Maximum-likelihood Estimation) 기반 8-state Viterbi FSM을 제안한다. 본 논문에서 제안한 최적의 Viterbi FSM은 전송단에서의 변조 지수에 대한 사전 정보 및 추정이 필요 없으며 GFSK(Gaussian Frequency Shift Keying) 심볼 검출이 가능하다. 제안한 알고리즘에 대한 성능은 HV1/HV2 패킷을 사용하여 평가하였으며, 시뮬레이션 결과는 DD(Decision Direct)와 같은 이상적인 접근 방식과 비교하여 10-3 BER에서 약 2dB 성능 향상을 보여주었다.

Bluetooth is a common wireless technology that is widely used as a connection medium between various consumer electronic devices. The Bluetooth receiver usually adopts a Viterbi algorithm to improve signal-to-noise ratio performance, but requires complex hardware and calculations for continuous search and estimation for the irrational modulation indexes at the transmission. This paper proposes a non-coherent maximum estimation based 8-State Viterbi FSM to solve these complexity problems. The proposed optimal Viterbi FSM can detect Gaussian frequency-shfit keying symbol without any prior information and estimation for the modulation indexes. The HV1/HV2 packets are used for the estimation of the proposed algorithm and the simulation results have shown performance improvements with about 2dB for 10-3 BER compared to other ideal approaches such as decision direct method.

키워드

과제정보

This paper was supported by Konyang University Research Fund in the second half of 2020.

참고문헌

  1. H. H Lee, S. H Cho, J. H Lee, S. I Myong, & S. S Lee.(2012). Recent Trends on Technology and Standardization of Next-Generation Optical Access Networks. 2012 Electronics and Telecommunications Trends, 27(2), 89-98,
  2. H. H Lee, S. S Lee & J. H Lee. (2012). Recent Trends for Next Generation Optical Access Networks. 2012 Electronics and Telecommunications Trends, 27(3), 168-178.
  3. IITP. (2018). Wired and wireless communication service subscription status, https://www.iitp.kr.
  4. John Wiley & Sons. (2011). Broadband optical access networks: emerging technologies and optical-wireless convergence. Hoboken : L. Kazovsky
  5. J. H. Park, G. Y. Kim, H. J. Park & Jin Hee Kim. (2008). FTTH Deployment Status & Strategy in Korea: GW-PON Based FTTH Field Trial and Reach Extension Strategy of FTTH in Korea. In IEEE GLOBECOM 2008-2008 IEEE Global Telecommunications Conference, (pp. 1-3). IEEE.
  6. R. Roka. (2014). Analysis of Possible Exploitation for Long Reach Passive Optical Networks. SIMULTECH 2014, (pp. 195-202). IEEE.
  7. John Wiley & Sons. (2012). Gigabit-capable passive optical networks. D. Hood & E. Trojer
  8. K. O Kim, K. H Doo, H. H Lee, S. H Kim, H Park, J. Y Oh & H. S Chung. (2019). High Speed and Low Latency Passive Optical Network for 5G Wireless Systems. Journal of Lightwave Technology, 37(12), 2873-2882. https://doi.org/10.1109/jlt.2018.2866805
  9. F. An et al. (2013). SUCCESS-HPON : A Next-Generation Optical Access Architecture for Smooth Migration from TDM-PON to WDM-PON. IEEE Communications Magazine, 43(11), S40-S47
  10. M. E. Abdalla, S. M. Idrus & A. B. Mohammad. (2013). Hybrid TDM-WDM 10G-PON for high scalability next generation PON. ICIEA 2013, (pp. 1448-1450). IEEE.
  11. Y. C. Chung. (2013). High-speed coherent WDM PON for next-generation access network. ICTON 2013, (pp. 1-4). IEEE.
  12. J. D Park, E. S Jung, B. K Kim, T. Y Kim, J. J Yoo, B. W Kim & B. T Kim. (2004). Wavelength Division Multiplexing Passive Optical Network Technology. Electronics and Telecommunications Trends, 19(6), 43-54.
  13. G. Kramer, B. Mukherjee & A. Maislos. (2008). Ethernet Passive Optical Networks. McGraw-Hill
  14. K. KwangOk & C. HwanSeok, (2015). Performance analysis by burst overhead length in symmetric-rate 10G-EPON reach extender. ICTC 2015, (pp. 1163-1166). IEEE.
  15. E. Karasan & E. Ayanoglu. (1998). Performance of WDM transport networks. IEEE Journal on Selected Areas in Communications, 16, 1081-1096. https://doi.org/10.1109/49.725180
  16. ETRI. (2005). ETRI Technical Evaluation Team MIC, FG-2005-03-18.