DOI QR코드

DOI QR Code

Design of Low-Complexity FSM based on Viterbi for Optimum Bluetooth GFSK Signal Receiver

최적의 Bluetooth GFSK 신호 수신을 위한 Viterbi 기반 저복잡도 FSM 설계

  • Kwon, Taek-Won (Department of Convergence Information Technology, Konyang University) ;
  • Lee, Kyu-Man (Department of Enterprise Software, Konyang University)
  • 권택원 (건양대학교 융합IT학과) ;
  • 이규만 (건양대학교 기업소프트웨어학부)
  • Received : 2021.11.26
  • Accepted : 2022.01.20
  • Published : 2022.01.28

Abstract

Bluetooth is a common wireless technology that is widely used as a connection medium between various consumer electronic devices. The Bluetooth receiver usually adopts a Viterbi algorithm to improve signal-to-noise ratio performance, but requires complex hardware and calculations for continuous search and estimation for the irrational modulation indexes at the transmission. This paper proposes a non-coherent maximum estimation based 8-State Viterbi FSM to solve these complexity problems. The proposed optimal Viterbi FSM can detect Gaussian frequency-shfit keying symbol without any prior information and estimation for the modulation indexes. The HV1/HV2 packets are used for the estimation of the proposed algorithm and the simulation results have shown performance improvements with about 2dB for 10-3 BER compared to other ideal approaches such as decision direct method.

Bluetooth는 다양한 소비자 전자 장치 간의 연결 매체로 널리 사용되는 공통 무선 기술이다. Bluetooth 수신기는 주로 신호 대 잡음비 성능 개선을 위해 일반적으로 Viterbi 알고리즘을 채택하지만 전송단에서의 irrational modulation index(무리수 변조 지수)로 수신단의 지속적인 탐색 및 추정이 필요하며 이를 위한 복잡한 하드웨어와 계산을 요구한다. 본 논문에서는 이러한 복잡도 문제를 해결하기 위해 비동기 최대 우도 추정(MLE, Maximum-likelihood Estimation) 기반 8-state Viterbi FSM을 제안한다. 본 논문에서 제안한 최적의 Viterbi FSM은 전송단에서의 변조 지수에 대한 사전 정보 및 추정이 필요 없으며 GFSK(Gaussian Frequency Shift Keying) 심볼 검출이 가능하다. 제안한 알고리즘에 대한 성능은 HV1/HV2 패킷을 사용하여 평가하였으며, 시뮬레이션 결과는 DD(Decision Direct)와 같은 이상적인 접근 방식과 비교하여 10-3 BER에서 약 2dB 성능 향상을 보여주었다.

Keywords

Acknowledgement

This paper was supported by Konyang University Research Fund in the second half of 2020.

References

  1. H. H Lee, S. H Cho, J. H Lee, S. I Myong, & S. S Lee.(2012). Recent Trends on Technology and Standardization of Next-Generation Optical Access Networks. 2012 Electronics and Telecommunications Trends, 27(2), 89-98,
  2. H. H Lee, S. S Lee & J. H Lee. (2012). Recent Trends for Next Generation Optical Access Networks. 2012 Electronics and Telecommunications Trends, 27(3), 168-178.
  3. IITP. (2018). Wired and wireless communication service subscription status, https://www.iitp.kr.
  4. John Wiley & Sons. (2011). Broadband optical access networks: emerging technologies and optical-wireless convergence. Hoboken : L. Kazovsky
  5. J. H. Park, G. Y. Kim, H. J. Park & Jin Hee Kim. (2008). FTTH Deployment Status & Strategy in Korea: GW-PON Based FTTH Field Trial and Reach Extension Strategy of FTTH in Korea. In IEEE GLOBECOM 2008-2008 IEEE Global Telecommunications Conference, (pp. 1-3). IEEE.
  6. R. Roka. (2014). Analysis of Possible Exploitation for Long Reach Passive Optical Networks. SIMULTECH 2014, (pp. 195-202). IEEE.
  7. John Wiley & Sons. (2012). Gigabit-capable passive optical networks. D. Hood & E. Trojer
  8. K. O Kim, K. H Doo, H. H Lee, S. H Kim, H Park, J. Y Oh & H. S Chung. (2019). High Speed and Low Latency Passive Optical Network for 5G Wireless Systems. Journal of Lightwave Technology, 37(12), 2873-2882. https://doi.org/10.1109/jlt.2018.2866805
  9. F. An et al. (2013). SUCCESS-HPON : A Next-Generation Optical Access Architecture for Smooth Migration from TDM-PON to WDM-PON. IEEE Communications Magazine, 43(11), S40-S47
  10. M. E. Abdalla, S. M. Idrus & A. B. Mohammad. (2013). Hybrid TDM-WDM 10G-PON for high scalability next generation PON. ICIEA 2013, (pp. 1448-1450). IEEE.
  11. Y. C. Chung. (2013). High-speed coherent WDM PON for next-generation access network. ICTON 2013, (pp. 1-4). IEEE.
  12. J. D Park, E. S Jung, B. K Kim, T. Y Kim, J. J Yoo, B. W Kim & B. T Kim. (2004). Wavelength Division Multiplexing Passive Optical Network Technology. Electronics and Telecommunications Trends, 19(6), 43-54.
  13. G. Kramer, B. Mukherjee & A. Maislos. (2008). Ethernet Passive Optical Networks. McGraw-Hill
  14. K. KwangOk & C. HwanSeok, (2015). Performance analysis by burst overhead length in symmetric-rate 10G-EPON reach extender. ICTC 2015, (pp. 1163-1166). IEEE.
  15. E. Karasan & E. Ayanoglu. (1998). Performance of WDM transport networks. IEEE Journal on Selected Areas in Communications, 16, 1081-1096. https://doi.org/10.1109/49.725180
  16. ETRI. (2005). ETRI Technical Evaluation Team MIC, FG-2005-03-18.