DOI QR코드

DOI QR Code

Study on Forestland Conversion Demand Prediction based on System Dynamics Model

System Dynamics 기반의 산지전용 수요 모델 개발에 관한 연구

  • Doo-Ahn, KWAK (Forest Policy and Economics Division, National Institute of Forest Science)
  • 곽두안 (국립산림과학원 산림정책연구과)
  • Received : 2022.11.21
  • Accepted : 2022.12.26
  • Published : 2022.12.31

Abstract

This study was performed to predict change of forestland area in future to 2050 based on System Dynamics Model which is based on feedback loop by causal relationship. As forestland area change in the future depends on potential forestland conversion demands, each demand type of forestland conversion such as agricultural, industrial, public and residential/commercial use was modeled using annual GDP, population, number of household, household construction permission area (1981~2019). In results, all of conversion demands would have continuously decreased to 2050 while residential and commercial land would be reduced from 2034. Due to such shortage, eventually, total of forestland in South Korea would have decreased to 6.18 million ha when compared to current 6.29 million ha. Moreover, the forestland conversion to other use types must be occurred continuously in future because most of forestland is owned privately in South Korea. Such steady decrement of forestland area in future can contribute to the shortage of carbon sink and encumber achievement of national carbon-neutral goal to 2050. If forestland conversion would be occurred inevitably in future according to such change trends of all types, improved laws and polices related to forestland should be prepared for planned use and rational conservation in terms of whole territory management. Therefore, it is needed to offer sufficient incentive, such as tax reduction and payment of ecosystem service on excellent forestland protection and maintenance, to private owners for minimizing forestland conversion. Moreover, active afforestation policy and practice have to be implemented on idle land for reaching national goal 'Carbon Neutral to 2050' in South Korea.

본 연구에서는 우리나라의 미래 산지면적의 변화를 전망하기 위해 요인들의 인과관계에 기반한 System Dynamics 모델을 개발하여 2050년까지 산지전용 수요 변화를 전국 단위로 분석하였다. 모델을 개발하기 위한 산지전용 형태의 유형을 농업용지, 산업용지, 주거·상업용지, 공용·공공용지로 분류하여 시계열 자료로 구축하였다. 각 산지전용 유형에 영향을 주는 피드백 인자를 분석한 결과, 농업용지와 산업용지는 모두 GDP와 직접적인 음과 양의 관계를 가지는 것으로 나타났고, 공용·공공용지는 GDP와 직접적인 양의 관계가 성립하지만 생활용 목적이 대부분이기 때문에 인구수와도 직접적인 영향을 주고받는 것으로 나타났으며, 주거·상업용지의 경우에는 경기상황을 대표하는 GDP와 주택건축허가량에 직접 영향을 받는 것으로 분석되었다. 또한 각 유형에 영향을 주는 GDP, 주택건축허가량, 인구의 변수는 하위 단의 생산토지, 생산자산, 고용자수 등의 변수와 순환적 관계가 성립하고 이러한 변수에 의해 유발되는 유형별 전용면적은 생산토지에 다시 영향을 주는 피드백 관계를 나타내는 것으로 나타났다. 그리하여 본 연구에서는 한국은행, 통계청에서 제공하는 GDP와 인구자료와 기존 연구에서 도출된 주택건축허가량 시계열 자료를 이용하여 각 유형을 직접 추정하는 모델을 개발하였다. 그 결과 농업용지 전용수요는 지속해서 감소하고, 2050년까지의 산업용지 수요는 2020년 전용면적 대비 약 39% 정도 감소하는 것으로 나타났으며, 공용·공공용지의 경우 2050년까지 감소추세를 나타내며 인구가 감소하는 2029년 이후부터 수요의 감소율이 지속해서 증가하는 것으로 분석되었으며, 주거·상업용지의 수요는 가구수 감소와 더불어 2034년 정점 대비 약 1,634ha까지 줄어드는 것으로 예측되었다. 이렇듯 산지전용은 미래에도 지속해서 발생하기 때문에 산지의 보호와 국토의 균형적 발전을 위해서는 현재의 산지이용 체계를 개선하여 합리적인 이용을 유도할 수 있는 법률과 정책이 수반되어야 할 것으로 사료된다.

Keywords

References

  1. Ahn, J.G. 2006. A Study on the Land Demand and Supply System in the Capital Region of Korea. Journal of the Korea Academia-Industrial cooperation Society 7(6):1277-1283.
  2. Bae, J.S., R.W. Joo. and Y.S. Kim. 2012. Forest transition in South Korea: Reality, path and drivers. Land Use Policy 29(1):198-207. https://doi.org/10.1016/j.landusepol.2011.06.007
  3. Bank of Korea. 2020. National account statistical data report. 51pp.
  4. C.H. Byun. and H.J. LEE. 2002. The Estimation on the Potential Capability of the Housing Demand and Supply in Seoul. Seoul Development Institute. 216pp.
  5. Cho, Y.S., W.H. Song. and J.P. Lee. 2019. Development of Land Demand Prediction Model depending on Changes in Social and Economic System Structure. Korean System Dynamics Review 20(2):41-67
  6. Choi, N.H. 2003. A system dynamics approach in analyzing the dynamics of Seoul metropolitan and finding policy leverages. Korean Public Administration Review 37(4):329-358.
  7. D.A. Kwak and S.H. Park. 2021. Change Prediction of Future Forestland Area by Transition of Land Use Types in South Korea. Journal of the Korean Association of Geographic Information Studies 24(4):99-112. https://doi.org/10.14352/jkaie.2020.24.1.99
  8. E.C. CHUNG. and S.J. Cho. 2005. Demographic Changes and Long-term Housing Demand in Korea. THE JOURNAL OF KOREA PLANNERS ASSOCIATION 40(3):37-46.
  9. J.H. Yun. and H.S. Kim. 2000. Empirical Analysis of Tenure Choice and Housing Demand in Korea. The Korea Spatial Planning Review 29(0):51-65.
  10. Joo, R.W., Jung, B.H., Lee, S.Y., Kim, C.S., Bae, J.S., Lee, K.H., Kim, K.H., Kim, J.J., Park, C.W., Han, S.Y., Kim, E.G., K. Choi. and Y.C. Youn. 2007. Historical Trends and Long-term Projections for Forest Sector in the Republic of Korea. Korea Forest Research Institute Research report. 229pp.
  11. Kim K.H. 1997. A study on housing demand and housing investment in Korea. Korea Research Institute for Human Settlements. 15pp.
  12. Kim, D.H. 2004. Systems Thinking. Sunhaksa. Seoul. 323pp.
  13. Kim, D.H., T.H. Moon. and D.H. Kim. 1999. System Dynamics. Daeyoung, Goyang. 261pp.
  14. Kim, J.S., H.Y. KIM and S.H. LEE. 2015. Analysis on Inundation Impacts of Sea Level Rise Using System Dynamics-GIS Model. Journal of the Korean Association of Geographic Information Studies 18(2):92-10.
  15. Korea Forest Service. 2018. 6th National Basic Forest Plan (2018~2037). Daejeon. 151pp.
  16. Korea Forest Service. 2022. Statistical Yearbook of Forestry. Daejeon. 454pp.
  17. Kwak, D.A. 2020. Change Prediction of Forestland Area in South Korea using Multinomial Logistic Regression Model. Journal of the Korean Association of Geographic Information Studies, 23(4):42-51.
  18. Kwak, D.A. 2021. Application of System Dynamics Approach to Development of Forestland Conversion Demand Prediction Model. Proceedings of the 2021 Joint Conference of the Forest Science. 142pp.
  19. Lee H.Y. 2009. Methods for Estimating Land Need and Its Empirical Analysis for Urban Growth Management. Journal of the Korean Urban Geographical Society 12(1):11-30.
  20. M.S. Moon. and S.Y. Ahn. 2003. An analysis of forecasting methodology for industrial location demand in Gyeonggi Province. Gyeonggi Research Institute. 177pp.
  21. Ministry of Environment. 2015. 4th Comprehensive Plan for National Environment. Sejong. 146pp.
  22. Ministry of Land, Infrastructure and Transport. 2019. 5th National Comprehensive Territorial Plan. Sejong. 249pp.
  23. Ryu, S.H. 2006. An Analysis of Forecasting Methodology for Industrial Land Demand. Korean Research Institute for Human Settlements. 95pp.
  24. S.U. Oh and B.S. Byun. 2016. Dynamics analysis of urban functions of the old downtown of Incheon by using system dynamics. The Geographical Journal of Korea 50(2):227-238.
  25. Statics Korea. 2019. Future household estimates: 2017~2047. Daejeon. 94pp.
  26. Statics Korea. 2021. Future population estimates: 2020~2070. Daejeon. 85pp.
  27. Y.E. Lee. and J.G. Ahn. 2003. An Analysis of Housing-Demands by Area in the Capital Region of Korea. The Journal of Korea Planners Association 38(6):61-74.
  28. Y.M. Park. and K.B. Park. 2008. Estimation of Project Performance Using Fuzzy Linear Regression. Journal of Korean Institute of Intelligent Systems 18(6):832-836. https://doi.org/10.5391/JKIIS.2008.18.6.832
  29. Yi, M.S. 2018. A structural analysis between overseas opening of geospatial information and the promotion of geospatial information industry using the systems thinking. Journal of The Korean Society of Surveying, Geodesy, Photogrammetry, and Cartography 36(4):213-221.
  30. Yi, M.S., K.H. Yeo and C.H. Kim. 2020. The Effect Analysis of Smart City Planning on Urban Dynamics Using System Dynamics Method - Focused on Anyang-city, Korea. Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography 38(1):57-67 https://doi.org/10.7848/KSGPC.2020.38.1.57