DOI QR코드

DOI QR Code

CONSTRUCTION FOR SELF-ORTHOGONAL CODES OVER A CERTAIN NON-CHAIN FROBENIUS RING

  • Kim, Boran (Department of Mathematics Education Kyungpook National University)
  • Received : 2021.05.26
  • Accepted : 2021.10.27
  • Published : 2022.01.01

Abstract

We present construction methods for free self-orthogonal (self-dual or Type II) codes over ℤ4[v]/〈v2 + 2v〉 which is one of the finite commutative local non-chain Frobenius rings of order 16. By considering their Gray images on ℤ4, we give a construct method for a code over ℤ4. We have some new and optimal codes over ℤ4 with respect to the minimum Lee weight or minimum Euclidean weight.

Keywords

Acknowledgement

Boran Kim is supported by Basic Science Research Program through the National Research Foundation of Korea(NRF) grant funded by the Korea government(MSIT)(NRF2021R1C1C2012517).

References

  1. E. Bannai, S. T. Dougherty, M. Harada, and M. Oura, Type II codes, even unimodular lattices, and invariant rings, IEEE Trans. Inform. Theory 45 (1999), no. 4, 1194-1205. https://doi.org/10.1109/18.761269
  2. A. R. Calderbank, E. M. Rains, P. W. Shor, and N. J. A. Sloane, Quantum error correction and orthogonal geometry, Phys. Rev. Lett. 78 (1997), no. 3, 405-408. https://doi.org/10.1103/PhysRevLett.78.405
  3. A. R. Calderbank, E. M. Rains, P. W. Shor, and N. J. A. Sloane, Quantum error correction via codes over GF(4), IEEE Trans. Inform. Theory 44 (1998), no. 4, 1369-1387. https://doi.org/10.1109/18.681315
  4. Y. Cao and Y. Cao, Negacyclic codes over the local ring ℤ4[v]]〈hv2 + 2v]〉 of oddly even length and their Gray images, Finite Fields Appl. 52 (2018), 67-93. https://doi.org/10.1016/j.ffa.2018.03.005
  5. Y. Cao and Y. Cao, Complete classification for simple root cyclic codes over the local ring ℤ4[v]]〈hv2 + 2v]〉, Cryptogr. Commun. 12 (2020), no. 2, 301-319. https://doi.org/10.1007/s12095-019-00403-4
  6. Y. Choie and N. Kim, The complete weight enumerator of type II codes over ℤ2m and Jacobi forms, IEEE Trans. Inform. Theory 47 (2001), no. 1, 396-399. https://doi.org/10.1109/18.904543
  7. Database of ℤ4 codes [online], http://Z4Codes.info.
  8. S. T. Dougherty, E. Salturk, and S. Szabo, On codes over Frobenius rings: generating characters, MacWilliams identities and generator matrices, Appl. Algebra Engrg. Comm. Comput. 30 (2019), no. 3, 193-206. https://doi.org/10.1007/s00200-019-00384-0
  9. N. Han, B. Kim, B. Kim, and Y. Lee, Infinite families of MDR cyclic codes over ℤ4 via constacyclic codes over ℤ4[u]〈hu2 - 1〉, Discrete Math. 343 (2020), no. 3, 111771, 12 pp. https://doi.org/10.1016/j.disc.2019.111771
  10. J. Y. Hyun, B. Kim, and M. Na, Construction of minimal linear codes from multivariable functions, Adv. Math. Commun. 15 (2021), no. 2, 227-240. https://doi.org/10.3934/amc.2020055
  11. S. Karadeniz, S. T. Dougherty, and B. Yildiz, Constructing formally self-dual codes over Rk, Discrete Appl. Math. 167 (2014), 188-196. https://doi.org/10.1016/j.dam.2013.11.017
  12. B. Kim, C. Kim, S. Kwon, and Y. Kwon, Jacobi forms over number fields from linear codes, submitted.
  13. B. Kim and Y. Lee, Lee weights of cyclic self-dual codes over Galois rings of characteristic p2, Finite Fields Appl. 45 (2017), 107-130. https://doi.org/10.1016/j.ffa.2016.11.015
  14. B. Kim and Y. Lee, A mass formula for cyclic codes over Galois rings of characteristic p3, Finite Fields Appl. 52 (2018), 214-242. https://doi.org/10.1016/j.ffa.2018.04.005
  15. B. Kim, Y. Lee, and J. Doo, Classification of cyclic codes over a non-Galois chain ring ℤsub>p[u]〈hu3〉, Finite Fields Appl. 59 (2019), 208-237. https://doi.org/10.1016/j.ffa.2019.06.003
  16. S. Ling and P. Sole, Type II codes over &3x1D405;4 +u&3x1D405;4, European J. Combin. 22 (2001), no. 7, 983-997. https://doi.org/10.1006/eujc.2001.0509
  17. V. S. Pless and W. C. Huffman, Handbook of coding theory, Volume I, Elsevier, North Holland, 1998.
  18. M. Shi, L. Qian, L. Sok, N. Aydin, and P. Sole, On constacyclic codes over ℤ4[u]〈hu2-1〉 and their Gray images, Finite Fields Appl. 45 (2017), 86-95. https://doi.org/10.1016/j.ffa.2016.11.016
  19. M. Shi, H. Zhu, L. Qian, L. Sok, and P. Sole, On self-dual and LCD double circulant and double negacirculant codes over 𝔽q + u𝔽q, Cryptogr. Commun. 12 (2020), no. 1, 53-70. https://doi.org/10.1007/s12095-019-00363-9
  20. M. Shi, S. Zhu, and S. Yang, A class of optimal p-ary codes from one-weight codes over 𝔽p[u]〈hum〉, J. Franklin Inst. 350 (2013), no. 5, 929-937. https://doi.org/10.1016/j.jfranklin.2012.05.014
  21. B. Yildiz and S. Karadeniz, Linear codes over ℤ4 + uℤ4: MacWilliams identities, projections, and formally self-dual codes, Finite Fields Appl. 27 (2014), 24-40. https://doi.org/10.1016/j.ffa.2013.12.007