CONSTRUCTION FOR SELF-ORTHOGONAL CODES OVER A CERTAIN NON-CHAIN FROBENIUS RING

Boran Kim

Abstract

We present construction methods for free self-orthogonal (self-dual or Type II) codes over $\mathbb{Z}_{4}[v] /\left\langle v^{2}+2 v\right\rangle$ which is one of the finite commutative local non-chain Frobenius rings of order 16. By considering their Gray images on \mathbb{Z}_{4}, we give a construct method for a code over \mathbb{Z}_{4}. We have some new and optimal codes over \mathbb{Z}_{4} with respect to the minimum Lee weight or minimum Euclidean weight.

1. Introduction

Coding theory has been many developments with many related areas such as combinatorics, quantum information theory, and number theory (for instance $[1,3,4,6,10,11,14,15,18,19,21])$. In coding theory, one of the central problems is finding a code with the best parameter. This leads to the optimality of minimum weight for a code; we call a linear code optimal if it has the highest minimal weight of any linear code of that length. Many linear codes over \mathbb{Z}_{4} have critical aspects in coding theory. A certain Gray maps image of a linear code over \mathbb{Z}_{4} is a non-linear binary code with larger length. Also, the minimum weight of a non-linear binary code can be found from the minimum Lee weight of the linear code over \mathbb{Z}_{4}; this code over \mathbb{Z}_{4} is the pre-image of the Gray map. From these reasons, linear codes over \mathbb{Z}_{4} are still studied, and the information for the codes have been updating [7]; for finding new optimal code over \mathbb{Z}_{4}, this database is used normally. Furthermore, self-orthogonal codes have significance to research of quantum communications and quantum computations (see [2], [3]).

A Frobenius ring is one of the most interesting parts in coding theory since the ring is related to the MacWilliams identity. A generator matrix of a linear code is useful for researching in this area. Especially, over a finite commutative

[^0]local non-chain Frobenius rings of order 16, the standard generator matrix of a linear code is introduced in [8]. In that respect, these are our motivations for looking at new optimal codes over \mathbb{Z}_{4} via codes over the ring $\mathbb{Z}_{4}[v] /\left\langle v^{2}+2 v\right\rangle$; this ring is one of the finite commutative local non-chain Frobenius rings of order 16.

In [9], N. Han et al. study α-constacyclic codes over a finite commutative Frobenius ring $\mathbb{Z}_{4}[u] /\left\langle u^{2}-1\right\rangle$. They also obtain new MDR cyclic codes over \mathbb{Z}_{4} via α-constacyclic codes over $\mathbb{Z}_{4}[u] /\left\langle u^{2}-1\right\rangle$. In [5], Y. Cao and Y. Cao classify all cyclic codes of odd length n over $\mathbb{Z}_{4}[v] /\left\langle v^{2}+2 v\right\rangle$, and give all self-dual cyclic codes over the ring. In [16], S. Ling and P. Solé study a Gray map, construction of lattice and invariant for Type II codes over a finite commutative local chain Frobenius ring $\mathbb{F}_{4}[u] /\left\langle u^{2}\right\rangle$. Recently, B. Kim et al. give invariants and Jacobi forms via linear codes over $\mathbb{F}_{4}[u] /\left\langle u^{2}\right\rangle[12]$. In general, a certain type of code over $\mathbb{F}_{p}[u] /\left\langle u^{m}\right\rangle$ is investigated by M. Shi et al. [20]. The Galois ring $G R\left(2^{2}, 2\right)$ is a finite commutative local Frobenius ring of order 16, and B. Kim and Y. Lee suggest Lee weights for cyclic self-dual codes over an extended ring $\operatorname{GR}\left(p^{2}, m\right)$, where p is prime and $m \geq 1$ [13].

In this paper, we focus on the ring $R:=\mathbb{Z}_{4}[v] /\left\langle v^{2}+2 v\right\rangle$. First, we present construction methods for free self-orthogonal (self-dual or Type II) codes over $\mathbb{Z}_{4}[v] /\left\langle v^{2}+2 v\right\rangle$ which is one of the finite commutative local non-chain Frobenius rings of order 16 (Theorems 1 and 3). We define the Euclidean weight in R for preserving the weight by a Gray map from R to \mathbb{Z}_{4}^{2}. By considering their Gray images on \mathbb{Z}_{4}, we construct codes over \mathbb{Z}_{4} (Theorem 4). In Tables 1 and 2 , we give some new and optimal codes over \mathbb{Z}_{4} with respect to the minimum Lee weight or minimum Euclidean weight.

2. Preliminaries

A linear code C of length n over a ring \mathfrak{R} is an \mathfrak{R}-submodule of \Re^{n}; from now on, we call a linear code by a code for simplicity. Any element $c=\left(c_{1}, \ldots, c_{n}\right)$ in C is called a codeword. The dual code C^{\perp} of C is $\left\{c \in \mathfrak{R}^{n}: c \cdot \hat{c}=0\right.$ for all $\hat{c} \in$ $C\}$ with respect to the usual inner product. If $C \subseteq C^{\perp}$ (resp. $C=C^{\perp}$), then C is a self-orthogonal (resp. self-dual) code.

For a finite commutative ring \mathfrak{R}, if the \mathfrak{R}-module is injective, then \mathfrak{R} is Frobenius. A finite commutative local Frobenius non-chain ring of order 16 has a unique non-principal maximal ideal $\langle u, v\rangle$ and the $\operatorname{socle} S o c(\Re)$ of a \mathfrak{R}-module is $\langle\omega\rangle=\{0, \omega\}$ for some elements u, v, ω in \mathfrak{R}; the $\operatorname{Soc}(\mathfrak{R})$ is defined as a sum of its minimal submodules. By the following proposition, we get a generator matrix for a code over a finite commutative local Frobenius non-chain ring of order 16.

Proposition 1 ([8, Theorem 4.1]). Let \Re be a finite commutative local Frobenius non-chain ring of order 16 . Any code C over $\mathfrak{\Re ~ h a s ~ t h e ~ f o l l o w i n g ~ g e n e r a t o r ~}$ matrix:

$\left(\right.$| $I_{k_{0}}$ | A_{1} | A_{2} | A_{3} | A_{4} | A_{5} | A_{6} |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | $u I_{k_{1}}$ | B_{1} | B_{2} | B_{3} | B_{4} | B_{5} |
| 0 | $v I_{k_{1}}$ | | | | | |
| 0 | 0 | $u I_{k_{2}}$ | 0 | 0 | C_{1} | C_{2} |
| 0 | 0 | 0 | $v I_{k_{3}}$ | 0 | | |
| 0 | 0 | 0 | 0 | | | |
| 0 | 0 | 0 | 0 | 0 | $\omega I_{k_{5}}$ | D |$)$,

where

- $I_{k_{i}}$ is the $k_{i} \times k_{i}$ identity matrix,
- A_{i} consists of any elements in \mathfrak{R},
- B_{i} consists of the elements from the unique maximal ideal of \mathfrak{R},
- each column of C_{i} have elements of only one ideal of order 4,
- the elements of D are from $\operatorname{Soc}(\mathfrak{R})$.

In (1), if $k_{0} \neq 0$ and $k_{i}=0$ with $1 \leq i \leq 5$, then a code C is called a free code over \Re. Here, the value k_{0} is called the free rank of the free code C.

The ring $R:=\mathbb{Z}_{4}[v] /\left\langle v^{2}+2 v\right\rangle$ is one of the finite commutative local nonchain Frobenius rings of order 16 (see [8]). The following set $\{1,3,1+v, 3+$ $v, 1+2 v, 3+2 v, 1+3 v, 3+3 v\}$ is the set of all units in the ring R. By simple calculation, we get $\mathfrak{u}^{2}=1$ for any unit \mathfrak{u} in R. This plays a key role in constructing for self-orthogonal codes over R.

3. Construction methods for self-orthogonal codes over \boldsymbol{R}

In this section, we present construction methods for finding free self-orthogonal codes over R (Theorems 1 and 3). We recall that a code means a linear code in this paper. Denote the $k \times k$ identity matrix by I_{k}.

Theorem 1. Let M be a $k_{1} \times k_{2}$-matrix over R with $4 \mid k_{1}$, where r_{i} is an i-th row vector of $M\left(1 \leq i \leq k_{1}\right)$. Let $\left(I_{k_{1}} \mid M\right)$ be a generator matrix for a free self-orthogonal (or self-dual) code C of length $k_{1}+k_{2}$ over R. Let u_{i} be a unit in $R\left(1 \leq i \leq k_{1}\right)$. For a fixed integer ℓ with $1 \leq \ell \leq k_{1}$, the following matrix \tilde{M} generates a free self-orthogonal code \tilde{C} of length $2 k_{1}+k_{2}$ over R with free rank $k_{1}+1$:

$$
\tilde{M}:=\left(\begin{array}{c|c|c}
& & u_{1} r_{1} \tag{2}\\
2 E_{i, j} & I_{k_{1}} & \vdots \\
& & u_{k_{1}} r_{k_{1}} \\
\hline v_{1} & v_{2} & r_{\ell}
\end{array}\right)
$$

such that

- r_{ℓ} is the ℓ-th row vector of the matrix M for the fixed integer $1 \leq \ell \leq k_{1}$,
- the matrix E_{ℓ} is a $k_{1} \times k_{1}$-matrix, where (ℓ, ℓ)-th component is equal to 1. The other components are all equal to $0\left(1 \leq i, j \leq k_{1}\right)$,
- the vector v_{1} (resp. v_{2}) has length k_{1}, where ℓ-th component is equal to $u_{\ell}\left(\right.$ resp. $\left.3 u_{\ell}\right)$. The other components are all equal to 1 (resp. 0).
Proof. Let \tilde{m}_{i} be an i-th row vector of the matrix \tilde{M}. First, except for \tilde{m}_{ℓ}, the inner product value $\tilde{m}_{i} \cdot \tilde{m}_{k_{1}+1}=0$ for $1 \leq i \leq k_{1}$ by the orthogonality of the code C. We also have that $\tilde{m}_{i} \cdot \tilde{m}_{j}=0$ for all $1 \leq i, j \leq k_{1}$. Moreover, we have $\tilde{m}_{k_{1}+1} \cdot \tilde{m}_{k_{1}+1}=v_{1} \cdot v_{1}+v_{2} \cdot v_{2}+r_{\ell} \cdot r_{\ell}=0$; in detail, $v_{1} \cdot v_{1}=0$ since $4 \mid k_{1}$. Clearly, $v_{2} \cdot v_{2}=1$ and $r_{\ell} \cdot r_{\ell}=3$. Finally, $\tilde{m}_{\ell} \cdot \tilde{m}_{k_{1}+1}=2 u_{\ell}+3 u_{\ell}+u_{\ell}\left(r_{\ell} \cdot r_{\ell}\right)=0$ in R. Thus, the matrix \tilde{M} generates a self-orthogonal code \tilde{C} of length $2 k_{1}+k_{2}$ over R. The code \tilde{C} is a free code since the nonzero components of the vectors v_{1} and v_{2} are units in R. Hence the result is proved.

We give an example for Theorem 1.
Example 1. Let

$$
M=\left(\begin{array}{cccc}
0 & 1+2 v & 3+2 v & 3+2 v \\
1+2 v & 1+2 v & 1+2 v & 0 \\
1+2 v & 0 & 3+2 v & 1+2 v \\
3+2 v & 1+2 v & 0 & 1+2 v
\end{array}\right)
$$

be a 4×4-matrix over R. Then the matrix $\left(I_{4} \mid M\right)$ generates a free self-dual code of length 8 over R. By Theorem 1, we can construct the following matrix

$$
\tilde{M}=\left(\begin{array}{c|c|cccc}
& & 0 & 1+v & 3+3 v & 3+3 v \\
2 E_{i, j} & I_{4} & 1+v & 1+v & 1+v & 0 \\
& & 1+v & 0 & 3+3 v & 1+v \\
\hline v_{1} & v_{2} & 0 & 1+2 v & 1+v & 0
\end{array}\right)
$$

where $2 E_{\ell}=\left\{\begin{array}{ll}2 & \text { if } i=j=1, \\ 0 & \text { otherwise },\end{array} \quad v_{1}=(1+3 v, 1,1,1)\right.$, and $v_{2}=(3+v, 0,0,0)$; here, set $\ell=1$ and $u_{i}=1+3 v(1 \leq i \leq 4)$ in Theorem 1 . Then the matrix \tilde{M} generates a free self-orthogonal code of length 12 over R with free rank 5 .

We recall the Euclidean weight $w t_{E}$ (resp. Lee weight $w t_{L}$) of elements in \mathbb{Z}_{4} is defined as

$$
\begin{gathered}
w t_{E}(0)=0, w t_{E}(1)=w t_{E}(3)=1, \text { and } w t_{E}(2)=4, \\
\left(\text { resp. } w t_{L}(0)=0, w t_{L}(1)=w t_{L}(3)=1, \text { and } w t_{L}(2)=2\right) .
\end{gathered}
$$

In this paper, we define the Euclidean weight of an element in R as follows.
Definition 2. For an element $\alpha=a+b v$ in $R\left(a, b \in \mathbb{Z}_{4}\right)$, the Euclidean weight $\hat{w} t_{E}(\alpha)$ of α is

$$
\hat{w} t_{E}(\alpha)=w t_{E}(b)+w t_{E}(a+b),
$$

where $w t_{E}$ is the Euclidean weight in \mathbb{Z}_{4}. The Euclidean weight $\hat{w} t_{E}(\mathbf{u})$ of a vector $\mathbf{u}=\left(\mathbf{u}_{\mathbf{1}}, \ldots, \mathbf{u}_{\mathbf{n}}\right)$ in R^{n} is equal to $\sum_{i=1}^{n} \hat{w} t_{E}\left(\mathbf{u}_{\mathbf{i}}\right)$.

Similarly, the Lee weight $\hat{w} t_{L}(\alpha)$ of α in R can be defined as $\hat{w} t_{L}(\alpha)=$ $w t_{L}(b)+w t_{L}(a+b)$, where $w t_{L}$ is the Lee weight in \mathbb{Z}_{4} (see [4]).

In the next proposition, we introduce a Gray map ϕ from R^{n} to $\mathbb{Z}_{4}^{2 n}$. This map ϕ preserves the Lee weight and orthogonality by [4].

Proposition 2. Let ϕ be a map from R^{n} to $\mathbb{Z}_{4}^{2 n}$ as follows:

$$
\phi: \begin{array}{ccc}
R^{n} & \longrightarrow & \mathbb{Z}_{4}^{2 n} \\
\left(a_{1}+b_{1} v, \ldots, a_{n}+b_{n} v\right) & \longmapsto & \left(b_{1}, a_{1}+b_{1}, \ldots, b_{n}, a_{n}+b_{n}\right),
\end{array}
$$

where $u=\left(a_{1}+b_{1} v, \ldots, a_{n}+b_{n} v\right)$ and $a_{i}, b_{i} \in \mathbb{Z}_{4}$ for $1 \leq i \leq n$. This map is a Gray map which preserves the Euclidean weight and the Lee weight as $w t_{E}(\phi(u))=\hat{w} t_{E}(u)$ and $w t_{L}(\phi(u))=\hat{w} t_{L}(u)$. Furthermore, the map ϕ also preserves orthogonality.

For a self-dual code C over R, the code C is called Type $I I$ code if the Euclidean weight of every codeword is divisible by 8 . If not, the code C is called a Type I code.

In Theorem 3, we present another construction method for (self-orthogonal, self-dual, or Type II) codes over R via (self-orthogonal, self-dual, or Type II) codes over \mathbb{Z}_{4}.

Theorem 3. Let M be a $k_{1} \times k_{2}$-matrix over \mathbb{Z}_{4} with an i-th row vector r_{i} $\left(1 \leq i \leq k_{1}\right)$. Let $G=\left(I_{k_{1}} \mid M\right)$ be a generator matrix for a free (self-orthogonal or self-dual) code of length $k_{1}+k_{2}$ over \mathbb{Z}_{4}. Then for every unit $u_{i} \in R$,

$$
\hat{G}=\left(I_{k_{1}} \mid \hat{M}\right)=\left(\begin{array}{l|c}
I_{k_{1}} & u_{1} r_{1} \\
\vdots \\
u_{k_{1}} r_{k_{1}}
\end{array}\right)
$$

generates a free (self-orthogonal, self-dual) code of length $k_{1}+k_{2}$ over R for $1 \leq i \leq k_{1}$. Especially, if G generates a free Type II code over \mathbb{Z}_{4}, then \hat{G} generates a free Type II code over R, where $u_{i}=1+3 v$ or $3+v$ in R $\left(1 \leq i \leq k_{1}\right)$.
Proof. Considering the lifting method from \mathbb{Z}_{4} to R, the matrix G generates a free (self-orthogonal or self-dual) code over R; it means that all the elements of G have the form $a+b v$ with $b=0$. Then the matrix \hat{G} generates a free (self-orthogonal or self-dual) code over R; the orthogonality is preserving since u_{i} is a unit in R for all $1 \leq i \leq k_{1}$. We note that $u_{i}^{2}=1$ for any unit $u_{i} \in R$ $\left(1 \leq i \leq k_{1}\right)$ as we mentioned in Section 2. The result follows.
Especially, for an element α and a unit u in R,

$$
\hat{w} t_{E}(\alpha)=\hat{w} t_{E}(u \alpha) \text { if and only if } u=1+3 v \text { or } 3+v ;
$$

we can prove this by simple calculation. Notably, we say that Type II code also can be obtained in this theorem.

The construction method in Theorem 3 is simple, but their Gray images give very meaningful database for linear codes over \mathbb{Z}_{4} (see Section 4).

Remark 1. We use the same notation as Theorem 3. Let \tilde{M} be a matrix such that $u_{i}=1$ for all i in M; it means that the matrix M is regarded as matrix over R, namely \tilde{M}. By considering the Gray map ϕ for \hat{M} and \tilde{M}, we have two \mathbb{Z}_{4} codes $C_{\phi(\hat{G})}$ and $C_{\phi(\tilde{G})}$ generated by the matrices $\phi(\hat{G})=\left(I_{k_{1}} \mid\right.$ $\phi(\hat{M}))$ and $\phi(\tilde{G})=\left(I_{k_{1}} \mid \phi(\tilde{M})\right)$, respectively. In Proposition 3, we compare the minimum weights for the codes $C_{\phi(\hat{G})}$ and $C_{\phi(\tilde{G})}$ with respect to Lee and Euclidean weights. Taking a similar point of view, in Proposition 3, we focus on the codes $C_{\hat{G}}$ and $C_{\tilde{G}}$ over R which are generated by the matrices \hat{G} and G, respectively.

Proposition 3. We use the same notation as Theorem 3 and Remark 1.
(i) Let $C_{\phi(\hat{G})}\left(\right.$ resp. $\left.C_{\phi(\tilde{G})}\right)$ be a code over \mathbb{Z}_{4} generated by the matrix $\phi(\hat{G})$ (resp. $\phi(\tilde{G})$). Then

$$
w t_{E}\left(C_{\phi(\hat{G})}\right) \geq w t_{E}\left(C_{\phi(\tilde{G})}\right) \text { and } w t_{L}\left(C_{\phi(\hat{G})}\right) \geq w t_{L}\left(C_{\phi(\tilde{G})}\right)
$$

(ii) Let $C_{\hat{G}}\left(\right.$ resp. $\left.C_{\tilde{G}}\right)$ be a code over R generated by the matrix \hat{G} (resp. $\left.\tilde{G}\right)$. Then

$$
\hat{w} t_{E}\left(C_{\hat{G}}\right) \geq \hat{w} t_{E}\left(C_{\tilde{G}}\right) \text { and } \hat{w} t_{L}\left(C_{\hat{G}}\right) \geq \hat{w} t_{L}\left(C_{\tilde{G}}\right) .
$$

Proof. Let $\alpha=a+b v$ be an element in R, where $a, b \in \mathbb{Z}_{4}$. Set $b=0$ since all the elements of \tilde{M} have the form $a+b v$ with $b=0$. Then, for a unit u in R, we get that $w t_{E}(\phi(u \alpha)) \geq w t_{E}(\phi(\alpha))$ by considering the Gray map ϕ; for any unit in $\{1,3,1+v, 3+v, 1+2 v, 3+2 v, 1+3 v, 3+3 v\}$ and arbitrary element α, we can check that the inequality is true through simple calculations. Hence, (i) is proved. Moreover, $w t_{E}\left(C_{\phi(\hat{G})}\right)=\hat{w} t_{E}\left(C_{\hat{G}}\right)$ and $w t_{E}\left(C_{\phi(\tilde{G})}\right)=\hat{w} t_{E}\left(C_{\tilde{G}}\right)$ since the Gray map ϕ preserves the Euclidean weight. For the Lee weight, we can prove it similarly. Thus (ii) follows.

We close this section with some examples for Theorem 3 and Proposition 3.
Example 2. Let $\left(I_{4} \mid M\right)$ be a 4×8-matrix which generates a free self-dual code C of length 8 over \mathbb{Z}_{4}, where

$$
M=\left(\begin{array}{cccc}
0 & 1 & 3 & 3 \\
1 & 1 & 1 & 0 \\
3 & 0 & 1 & 3 \\
1 & 3 & 0 & 3
\end{array}\right)
$$

the minimum Lee weight of C is 4 and the minimum Euclidean weight of C is 4.
(i) Set $u_{i}=1+3 v(1 \leq i \leq 4)$ in Theorem 3. Then $\left(I_{4} \mid(1+3 v) M\right)$ generates a free self-dual code of length 8 over R with the minimum Lee weight 4 and the minimum Euclidean weight 4.
(ii) Set $u_{1}=u_{2}=1+2 v$ and $u_{3}=u_{4}=3+2 v$ in Theorem 3. Then the matrix

$$
\left(\begin{array}{c|cccc}
& 0 & 1+2 v & 3+2 v & 3+2 v \\
I_{4} & 1+2 v & 1+2 v & 1+2 v & 0 \\
& 1+2 v & 0 & 3+2 v & 1+2 v \\
3+2 v & 1+2 v & 0 & 1+2 v
\end{array}\right)
$$

generates a free self-dual code of length 8 over R with the minimum Lee weight 6 and the minimum Euclidean weight 8.

By (i) and (ii), Proposition 3 can be checked.
Example 3. (i) Let

$$
M=\left(\begin{array}{l|lllll}
& \begin{array}{llll}
0 & 3 & 3 & 3
\end{array} & 2 \\
I_{4} & 0 & 1 & 3 & 2 \\
1 & 1 & 0 & 3 & 2 \\
2 & 2 & 1 & 3 & 1
\end{array}\right)
$$

be a 4×9-matrix which generates a free code C of length 9 over \mathbb{Z}_{4} with the minimum Lee weight 6 and the minimum Euclidean weight 6. By Theorem 3, we obtain the following matrix

$$
\hat{M}:=\left(I_{4} \mid M_{s}\right):=\left(\begin{array}{c}
\\
I_{4} \\
\\
\\
0
\end{array} 3^{0+3 v} \begin{array}{cccc}
3+3 v & 3+3 v & 2+2 v \\
1+v & 0 & 1+v & 3+3 v \\
2+2 v & 2+2 v & 1+v & 3+2 v \\
2+3 v & 2+2 v \\
2+v
\end{array}\right) .
$$

The matrix \hat{M} generates a free code of length 9 over R with the minimum Lee weight 8 and the minimum Euclidean weight 12; we consider the Gray map's image $\phi\left(M_{s}\right)$ of M_{s}

$$
\phi\left(M_{s}\right)=\left(\begin{array}{llllllllll}
0 & 0 & 3 & 2 & 3 & 2 & 3 & 2 & 2 & 0 \tag{3}\\
3 & 2 & 0 & 0 & 1 & 2 & 3 & 2 & 2 & 0 \\
1 & 2 & 1 & 2 & 0 & 0 & 3 & 2 & 2 & 0 \\
2 & 0 & 2 & 0 & 1 & 2 & 3 & 2 & 1 & 2
\end{array}\right)
$$

Then the matrix $\left(I_{4} \mid \phi\left(M_{s}\right)\right)$ gives a linear code of length 14 over \mathbb{Z}_{4} with the minimum Lee weight 8 and the minimum Euclidean weight 12.
(ii) Now, we will find a new code over \mathbb{Z}_{4} by using our construction method in Theorem 3. Set the matrix M_{s} as

$$
\left(\begin{array}{llllllll}
0 & 0 & 2 & 3 & 2 & 1 & 2 & 1 \tag{4}\\
2 & 3 & 2 & 3 & 2 & 3 & 0 & 0 \\
2 & 3 & 0 & 0 & 2 & 1 & 2 & 3 \\
2 & 1 & 2 & 3 & 0 & 0 & 2 & 3
\end{array}\right)=\left(\begin{array}{l}
r_{1} \\
r_{2} \\
r_{3} \\
r_{4}
\end{array}\right)
$$

over \mathbb{Z}_{4} (the matrix $\left(I_{4} \mid M_{s}\right)$ gives a self-orthogonal code of length 12 over \mathbb{Z}_{4} with the minimum Lee weight 6). By using the Gray map ϕ, we obtain the following matrix \hat{M}_{s}
(5) $\phi\left(\begin{array}{c}(1+v) r_{1} \\ (3+v) r_{2} \\ (3+3 v) r_{3} \\ (1+v) r_{4}\end{array}\right)=\left(\begin{array}{llllllllllllllll}0 & 0 & 0 & 0 & 2 & 0 & 3 & 2 & 2 & 0 & 1 & 2 & 2 & 0 & 1 & 2 \\ 2 & 0 & 3 & 0 & 2 & 0 & 3 & 0 & 2 & 0 & 3 & 0 & 0 & 0 & 0 & 0 \\ 2 & 0 & 1 & 2 & 0 & 0 & 0 & 0 & 2 & 0 & 3 & 2 & 2 & 0 & 1 & 2 \\ 2 & 0 & 1 & 2 & 2 & 0 & 3 & 2 & 0 & 0 & 0 & 0 & 2 & 0 & 3 & 2\end{array}\right)$.

The matrix $\left(I_{4} \mid \hat{M}_{s}\right)$ generates a self-orthogonal code of length 20 over \mathbb{Z}_{4} with the minimum Lee weight 8 ; it is one of the meaningful results because this is a new code over \mathbb{Z}_{4} by [7].

4. New optimal codes over \mathbb{Z}_{4} from codes over R

In this section, we give a method for finding codes over \mathbb{Z}_{4} by using codes over R and the Gray map ϕ. From this method, we can find many new optimal codes over \mathbb{Z}_{4}. We recall that a code is optimal if it has the highest minimal weight of any linear code of that length. In contrast, a code to be extremal if it meets the applicable bounds. It means that if a code is extremal, then it is optimal; the reverse is not true (see [17]).

The following theorem is a construction method for codes over \mathbb{Z}_{4} via Gray map's images of codes over R.

Theorem 4. Let $\left(I_{k} \mid \tilde{M}_{i}\right)$ be a generator matrix for a free code of length $k+\ddot{m}_{i}$ over R constructed by Theorems 1 or 3 with $1 \leq i \leq n_{1}$. Let $\left(I_{k} \mid M_{j}\right)$ be a generator matrix for an arbitrary free code of length $k+m_{j}$ over \mathbb{Z}_{4} with $1 \leq j \leq n_{2}$. We consider the following matrix over \mathbb{Z}_{4} :

$$
\hat{M}:=\left(I_{k}\left|\phi\left(\tilde{M}_{1}\right)\right| \cdots\left|\phi\left(\tilde{M}_{n_{1}}\right)\right| M_{1}|\cdots| M_{n_{2}}\right) .
$$

Then the matrix \hat{M} generates a free code of length $k+2 \sum_{i=1}^{n_{1}} \ddot{m}_{i}+\sum_{j=1}^{n_{2}} m_{j}$ over \mathbb{Z}_{4} with free rank k.

Table 1. New free (optimal) codes over \mathbb{Z}_{4} with free rank 4

length	generator matrix	min. Lee weight	min. Euclidean weight	L -opt	E -opt
66	$\left(D_{58} \mid M_{8}\right)$	46^{*}	73^{*}	\bigcirc	\bigcirc
68	$\left(D_{60} \mid M_{8}\right)$	50^{*}	65^{*}	\bigcirc	\bigcirc
70	$\left(D_{62} \mid M_{8}\right)$	50^{*}	78^{*}	\bigcirc	\bigcirc
70	$\left(D_{60} \mid M_{10}\right)$	50^{*}	67^{*}	\bigcirc	\times
72	$\left(D_{64} \mid M_{8}\right)$	50^{*}	73^{*}	\bigcirc	\times
72	$\left(D_{62} \mid M_{10}\right)$	50^{*}	74^{*}	\bigcirc	\bigcirc
74	$\left(D_{58}\left\|M_{8}\right\| M_{8}\right)$	48^{*}	78^{*}	\times	\bigcirc
74	$\left(D_{64} \mid M_{10}\right)$	50^{*}	75^{*}	\bigcirc	\times
76	$\left(D_{60}\left\|M_{8}\right\| M_{8}\right)$	52^{*}	78^{*}	\bigcirc	\times
76	$\left(D_{58}\left\|M_{8}\right\| M_{10}\right)$	48^{*}	88^{*}	\times	\bigcirc
78	$\left(D_{62}\left\|M_{8}\right\| M_{8}\right)$	52^{*}	88^{*}	\bigcirc	\bigcirc
78	$\left(D_{60}\left\|M_{8}\right\| M_{10}\right)$	52^{*}	80^{*}	\bigcirc	\times
80	$\left(D_{64}\left\|M_{8}\right\| M_{8}\right)$	52^{*}	86^{*}	\bigcirc	\times
80	$\left(D_{62}\left\|M_{8}\right\| M_{10}\right)$	52^{*}	88^{*}	\bigcirc	\bigcirc
82	$\left(D_{74} \mid M_{8}\right)$	52^{*}	70^{*}	\bigcirc	\times

82	$\left(D_{64}\left\|M_{8}\right\| M_{10}\right)$	52^{*}	88^{*}	\bigcirc	\bigcirc
86	$\left(D_{78} \mid M_{8}\right)$	52	86^{*}	\times	\bigcirc
86	$\left(D_{76} \mid M_{10}\right)$	54^{*}	78^{*}	\bigcirc	\times
88	$\left(D_{78} \mid M_{10}\right)$	52^{*}	86^{*}	\times	\bigcirc
92	$\left(D_{82} \mid M_{10}\right)$	58^{*}	86^{*}	\bigcirc	\bigcirc
92	$\left(D_{74}\left\|D_{8}\right\| M_{10}\right)$	56	84^{*}	\bigcirc	\times
94	$\left(D_{76}\left\|D_{8}\right\| M_{10}\right)$	60^{*}	92^{*}	\bigcirc	\bigcirc
96	$\left(D_{80} \mid M_{16}\right)$	56^{*}	85^{*}	\times	\times
96	$\left(D_{78}\left\|D_{8}\right\| M_{10}\right)$	56^{*}	100^{*}	\times	\bigcirc
98	$\left(D_{82} \mid M_{16}\right)$	59^{*}	87^{*}	\times	\times
98	$\left(D_{88} \mid M_{10}\right)$	60	94^{*}	\bigcirc	\bigcirc
98	$\left(D_{80}\left\|M_{8}\right\| M_{10}\right)$	60	92	\bigcirc	\times
100	$\left(D_{84} \mid M_{16}\right)$	59^{*}	86^{*}	\times	\times
100	$\left(D_{82}\left\|M_{8}\right\| M_{10}\right)$	64^{*}	100^{*}	\bigcirc	\bigcirc
102	$\left(D_{84}\left\|M_{8}\right\| M_{10}\right)$	64^{*}	92^{*}	\bigcirc	\bigcirc
104	$\left(D_{86}\left\|M_{8}\right\| M_{10}\right)$	68^{*}	100^{*}	\bigcirc	\bigcirc
106	$\left(D_{88}\left\|M_{8}\right\| M_{10}\right)$	64	108^{*}	\bigcirc	\bigcirc

It is possible to get many free new and optimal codes by using Theorem 4; our results are compared with database in [7]. In Table 1, we let M_{8} (resp. M_{10}, M_{16}) be a matrix which is obtained in (4) (resp. (3), (5)). In Table 2, the matrix $M_{10,3}$ is a 3×10-matrix over \mathbb{Z}_{4} obtained by Theorem 3 ;

$$
\begin{aligned}
M_{10,3} & =\phi\left(\begin{array}{ccccccc}
0 & 3+2 v & 3+2 v & 3+2 v & 2 \\
2+3 v & 0 & 2+v & 2+3 v & 2 v \\
1+2 v & 1+2 v & 0 & 3+2 v & 2
\end{array}\right) \\
& =\left(\begin{array}{cccccccccc}
0 & 0 & 2 & 1 & 2 & 1 & 2 & 1 & 0 & 2 \\
3 & 1 & 0 & 0 & 1 & 3 & 3 & 1 & 2 & 2 \\
2 & 3 & 2 & 3 & 0 & 0 & 2 & 1 & 0 & 2
\end{array}\right) .
\end{aligned}
$$

Let D_{n} be a generator matrix of a linear code of length n over \mathbb{Z}_{4} given in [7]. The L-opt (resp. E-opt) means that a code is an optimal code with respect to the minimum Lee weight (resp. Euclidean weight). The *-marked weight presents that the weight is new in each case.

Table 2. New free (optimal) codes over \mathbb{Z}_{4} with free rank 3

length	generator matrix	min. Lee weight	min. Euclidean weight	L -opt	E -opt
69	$\left(D_{59} \mid M_{10,3}\right)$	54^{*}	76^{*}	\bigcirc	\bigcirc
71	$\left(D_{61} \mid M_{10,3}\right)$	58^{*}	84^{*}	\bigcirc	\bigcirc

73	$\left(D_{63} \mid M_{10,3}\right)$	60^{*}	84^{*}	\bigcirc	\bigcirc
75	$\left(D_{65} \mid M_{10,3}\right)$	50	66^{*}	\bigcirc	\bigcirc
77	$\left(D_{67} \mid M_{10,3}\right)$	50	72^{*}	\bigcirc	\bigcirc
79	$\left(D_{69} \mid M_{10,3}\right)$	54^{*}	70^{*}	\bigcirc	\bigcirc
81	$\left(D_{71} \mid M_{10,3}\right)$	52	73^{*}	\times	\bigcirc
83	$\left(D_{73} \mid M_{10,3}\right)$	54^{*}	76^{*}	\bigcirc	\bigcirc
85	$\left(D_{75} \mid M_{10,3}\right)$	58^{*}	74^{*}	\bigcirc	\bigcirc
87	$\left(D_{77} \mid M_{10,3}\right)$	56^{*}	77^{*}	\times	\bigcirc
89	$\left(D_{79} \mid M_{10,3}\right)$	58^{*}	80^{*}	\bigcirc	\bigcirc
91	$\left(D_{81} \mid M_{10,3}\right)$	62^{*}	78^{*}	\bigcirc	\bigcirc
93	$\left(D_{83} \mid M_{10,3}\right)$	60^{*}	81^{*}	\times	\bigcirc
95	$\left(D_{85} \mid M_{10,3}\right)$	62^{*}	84^{*}	\bigcirc	\bigcirc
97	$\left(D_{87} \mid M_{10,3}\right)$	66^{*}	82^{*}	\bigcirc	\bigcirc
99	$\left(D_{89} \mid M_{10,3}\right)$	64^{*}	85^{*}	\times	\bigcirc
101	$\left(D_{91} \mid M_{10,3}\right)$	66^{*}	88^{*}	\bigcirc	\bigcirc
103	$\left(D_{93} \mid M_{10,3}\right)$	70^{*}	86^{*}	\bigcirc	\bigcirc
105	$\left(D_{95} \mid M_{10,3}\right)$	70^{*}	86^{*}	\bigcirc	\bigcirc
107	$\left(D_{97} \mid M_{10,3}\right)$	70^{*}	92^{*}	\bigcirc	\bigcirc
109	$\left(D_{99} \mid M_{10,3}\right)$	74^{*}	90^{*}	\bigcirc	\bigcirc
111	$\left(D_{101} \mid M_{10,3}\right)$	72^{*}	93^{*}	\times	\bigcirc
113	$\left(D_{103} \mid M_{10,3}\right)$	74	96^{*}	\bigcirc	\bigcirc
115	$\left(D_{105} \mid M_{10,3}\right)$	78^{*}	94^{*}	\bigcirc	\bigcirc
117	$\left(D_{107} \mid M_{10,3}\right)$	76^{*}	97^{*}	\times	\bigcirc
119	$\left(D_{109} \mid M_{10,3}\right)$	78^{*}	100^{*}	\bigcirc	\bigcirc
121	$\left(D_{111} \mid M_{10,3}\right)$	82^{*}	98^{*}	\bigcirc	\bigcirc
123	$\left(D_{113} \mid M_{10,3}\right)$	80^{*}	101^{*}	\times	\bigcirc

Remark 2. Let D_{62} be a generator matrix for a linear code C over \mathbb{Z}_{4} of length 62 and free rank 4 with the minimum Lee weight 38 ; the code C is not an optimal code. By using Theorem 4 and the matrix M_{10}, we consider the matrix $\left(D_{62} \mid M_{10}\right)$ over \mathbb{Z}_{4}; this matrix generates a linear code \hat{C} over \mathbb{Z}_{4} of length 72 , where the free rank is 4 and the minimum Lee weight is 44 . This code \hat{C} is an optimal code over \mathbb{Z}_{4} by [7]. This means that even though a code C is not optimal over \mathbb{Z}_{4}, a code \hat{C} generated by the code C can be an optimal code over \mathbb{Z}_{4} by using Theorem 4 .

5. Conclusion

In this paper, we present new construction methods for self-orthogonal, selfdual, or Type II codes over $R=\mathbb{Z}_{4}[v] /\left\langle v^{2}+2 v\right\rangle$. We find new optimal codes over \mathbb{Z}_{4} by using the Gray map's images of the codes suggested by our methods
over R. Except for the codes given in this paper, we can construct more new optimal codes over \mathbb{Z}_{4}. This is significant in this area since linear codes over \mathbb{Z}_{4} can give many applications such as non-linear binary codes with many quantum codes. Later, our results for self-dual codes or Type II codes also can be used in number theory for finding invariants, new modular forms or Jacobi forms over certain number fields.

References

[1] E. Bannai, S. T. Dougherty, M. Harada, and M. Oura, Type II codes, even unimodular lattices, and invariant rings, IEEE Trans. Inform. Theory 45 (1999), no. 4, 1194-1205. https://doi.org/10.1109/18.761269
[2] A. R. Calderbank, E. M. Rains, P. W. Shor, and N. J. A. Sloane, Quantum error correction and orthogonal geometry, Phys. Rev. Lett. 78 (1997), no. 3, 405-408. https: //doi.org/10.1103/PhysRevLett.78.405
[3] A. R. Calderbank, E. M. Rains, P. W. Shor, and N. J. A. Sloane, Quantum error correction via codes over GF(4), IEEE Trans. Inform. Theory 44 (1998), no. 4, 13691387. https://doi.org/10.1109/18.681315
[4] Y. Cao and Y. Cao, Negacyclic codes over the local ring $\mathbb{Z}_{4}[v] /\left\langle v^{2}+2 v\right\rangle$ of oddly even length and their Gray images, Finite Fields Appl. 52 (2018), 67-93. https://doi.org/ 10.1016/j.ffa.2018.03.005
[5] Y. Cao and Y. Cao, Complete classification for simple root cyclic codes over the local ring $\mathbb{Z}_{4}[v] /\left\langle v^{2}+2 v\right\rangle$, Cryptogr. Commun. 12 (2020), no. 2, 301-319. https://doi.org/ 10.1007/s12095-019-00403-4
[6] Y. Choie and N. Kim, The complete weight enumerator of type II codes over $\mathbb{Z}_{2 m}$ and Jacobi forms, IEEE Trans. Inform. Theory 47 (2001), no. 1, 396-399. https://doi.org/ 10.1109/18.904543
[7] Database of \mathbb{Z}_{4} codes [online], http://Z4Codes.info.
[8] S. T. Dougherty, E. Saltürk, and S. Szabo, On codes over Frobenius rings: generating characters, MacWilliams identities and generator matrices, Appl. Algebra Engrg. Comm. Comput. 30 (2019), no. 3, 193-206. https://doi.org/10.1007/s00200-019-00384-0
[9] N. Han, B. Kim, B. Kim, and Y. Lee, Infinite families of MDR cyclic codes over \mathbb{Z}_{4} via constacyclic codes over $\mathbb{Z}_{4}[u] /\left\langle u^{2}-1\right\rangle$, Discrete Math. 343 (2020), no. 3, 111771, 12 pp. https://doi.org/10.1016/j.disc.2019.111771
[10] J. Y. Hyun, B. Kim, and M. Na, Construction of minimal linear codes from multivariable functions, Adv. Math. Commun. 15 (2021), no. 2, 227-240. https://doi.org/ 10.3934/amc. 2020055
[11] S. Karadeniz, S. T. Dougherty, and B. Yildiz, Constructing formally self-dual codes over R_{k}, Discrete Appl. Math. 167 (2014), 188-196. https://doi.org/10.1016/j.dam. 2013. 11.017
[12] B. Kim, C. Kim, S. Kwon, and Y. Kwon, Jacobi forms over number fields from linear codes, submitted.
[13] B. Kim and Y. Lee, Lee weights of cyclic self-dual codes over Galois rings of characteristic p^{2}, Finite Fields Appl. 45 (2017), 107-130. https://doi.org/10.1016/j.ffa. 2016.11.015
[14] B. Kim and Y. Lee, A mass formula for cyclic codes over Galois rings of characteristic p^{3}, Finite Fields Appl. 52 (2018), 214-242. https://doi.org/10.1016/j.ffa.2018.04. 005
[15] B. Kim, Y. Lee, and J. Doo, Classification of cyclic codes over a non-Galois chain ring $\mathbb{Z}_{p}[u] /\left\langle u^{3}\right\rangle$, Finite Fields Appl. 59 (2019), 208-237. https://doi.org/10.1016/j.ffa. 2019.06.003
[16] S. Ling and P. Solé, Type II codes over $\mathbf{F}_{4}+u \mathbf{F}_{4}$, European J. Combin. 22 (2001), no. 7, 983-997. https://doi.org/10.1006/eujc.2001. 0509
[17] V. S. Pless and W. C. Huffman, Handbook of coding theory, Volume I, Elsevier, North Holland, 1998.
[18] M. Shi, L. Qian, L. Sok, N. Aydin, and P. Solé, On constacyclic codes over $\mathbb{Z}_{4}[u] /\left\langle u^{2}-1\right\rangle$ and their Gray images, Finite Fields Appl. 45 (2017), 86-95. https://doi.org/10.1016/ j.ffa.2016.11.016
[19] M. Shi, H. Zhu, L. Qian, L. Sok, and P. Solé, On self-dual and LCD double circulant and double negacirculant codes over $\mathbb{F}_{q}+u \mathbb{F}_{q}$, Cryptogr. Commun. 12 (2020), no. 1, 53-70. https://doi.org/10.1007/s12095-019-00363-9
[20] M. Shi, S. Zhu, and S. Yang, A class of optimal p-ary codes from one-weight codes over $\mathbb{F}_{p}[u] /\left\langle u^{m}\right\rangle$, J. Franklin Inst. 350 (2013), no. 5, 929-937. https://doi.org/10.1016/j. jfranklin. 2012.05 .014
[21] B. Yildiz and S. Karadeniz, Linear codes over $\mathbb{Z}_{4}+u \mathbb{Z}_{4}$: MacWilliams identities, projections, and formally self-dual codes, Finite Fields Appl. 27 (2014), 24-40. https: //doi.org/10.1016/j.ffa.2013.12.007

Boran Kim
Department of Mathematics Education
Kyungpook National University
Daegu 41566, Korea
Email address: bkim21@knu.ac.kr

[^0]: Received May 26, 2021; Accepted October 27, 2021.
 2010 Mathematics Subject Classification. Primary 94B05.
 Key words and phrases. Frobenius ring, non-chain ring, self-orthogonal code, code over \mathbb{Z}_{4}, optimal code.

 Boran Kim is supported by Basic Science Research Program through the National Research Foundation of Korea(NRF) grant funded by the Korea government(MSIT)(NRF2021R1C1C2012517).

