DOI QR코드

DOI QR Code

Conversion of Glucose and Xylose to 5-Hydroxymethyl furfural, Furfural, and Levulinic Acid Using Ethanol Organosolv Pretreatment under Various Conditions

  • Ki-Seob, GWAK (Advanced Materials R&D Team, R&D Institute, Moorim P&P Co., Ltd.) ;
  • Chae-Hwi, YOON (Department of Agriculture, Forestry, and Bioresources, College of Agriculture and Life Sciences, Seoul National University) ;
  • Jong-Chan, KIM (Department of Agriculture, Forestry, and Bioresources, College of Agriculture and Life Sciences, Seoul National University) ;
  • Jong-Hwa, KIM (Department of Agriculture, Forestry, and Bioresources, College of Agriculture and Life Sciences, Seoul National University) ;
  • Young-Min, CHO (Department of Agriculture, Forestry, and Bioresources, College of Agriculture and Life Sciences, Seoul National University) ;
  • In-Gyu, CHOI (Department of Agriculture, Forestry, and Bioresources, College of Agriculture and Life Sciences, Seoul National University)
  • 투고 : 2022.08.24
  • 심사 : 2022.11.18
  • 발행 : 2022.11.25

초록

The objective of this study was to understand the conversion characteristics of glucose and xylose using the major monosaccharide standards for lignocellulosic biomass. The acid-catalyzed organosolv pretreatment conducted using ethanol was significantly different from the acid-catalyzed process conducted in an aqueous medium. 5-hydroxymethylfurfural (5-HMF), levulinic acid and furfural were produced from glucose conversion. The maximum yield of 5-HMF was 5.5%, at 200℃, when 0.5% sulfuric acid was used. The maximum yield of levulinic acid was 21.5%, at 220℃, when 1.0% sulfuric acid was used. Furfural was produced from xylose conversion and under 0.5% sulfuric acid, furfural reached the maximum yield 48.5% at 210℃. Ethyl levulinate and methyl levulinate were also formed from the glucose standard following the esterification reaction conducted under conditions of the combined conversion method, which proceeded under both ethanol-rich and water-rich conditions.

키워드

과제정보

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government Ministry of Science and ICT (MSIT) (No. 2021M3H4A3A02086904).

참고문헌

  1. Agirrezabal-Telleria, I., Larreategui, A., Requies, J., Guemez, M.B., Arias, P.L. 2011. Furfural production from xylose using sulfonic ion-exchange resins (Amberlyst) and simultaneous stripping with nitrogen. Bioresource Technology 102(16): 7478-7485. https://doi.org/10.1016/j.biortech.2011.05.015
  2. Antal, M.J. Jr., Leesomboon, T., Mok, W.S., Richards, G.N. 1991. Mechanism of formation of 2-furaldehyde from D-xylose. Carbohydrate Research 217: 71-85. https://doi.org/10.1016/0008-6215(91)84118-X
  3. Antal, M.J. Jr., Mok, W.S.L., Richards, G.N. 1990. Mechanism of formation of 5-(hydroxymethyl)-2-furaldehyde from D-fructose an sucrose. Carbohydrate Research 199(1): 91-109. https://doi.org/10.1016/0008-6215(90)84096-D
  4. Asghari, F.S., Yoshida, H. 2006. Acid-catalyzed production of 5-hydroxymethyl furfural from D-fructose in subcritical water. Industrial & Engineering Chemistry Research 45(7): 2163-2173. https://doi.org/10.1021/ie051088y
  5. Bozell, J.J., Moens, L., Elliott, D.C., Wang, Y., Neuenscwander, G.G., Fitzpatrick, S.W., Bilski, R.J., Jarnefeld, J.L. 2000. Production of levulinic acid and use as a platform chemical for derived products. Resources, Conservation and Recycling 28(3-4): 227-239. https://doi.org/10.1016/S0921-3449(99)00047-6
  6. Chandra, R.P., Bura, R., Mabee, W.E., Berlin, A., Pan, X., Saddler, J.N. 2007. Substrate Pretreatment: The Key to Effective Enzymatic Hydrolysis of Lignocellulosics? In: Biofuels, Ed. by Olsson, L. Springer, Berlin, Germany.
  7. Choudhary, V., Sandler, S.I., Vlachos, D.G. 2012. Con- version of xylose to furfural using Lewis and Bronsted acid catalysts in aqueous media. ACS Catalysis 2(9): 2022-2028.
  8. Chun, C., Xiaojian, M.A., Peilin, C.E.N. 2006. Kinetics of levulinic acid formation from glucose decomposition at high temperature. Chinese Journal of Chemical Engineering 14(5): 708-712. https://doi.org/10.1016/S1004-9541(06)60139-0
  9. Dias, A.S., Pillinger, M., Valente, A.A. 2005. Dehydration of xylose into furfural over micro-mesoporous sulfonic acid catalysts. Journal of Catalysis 229(2): 414-423. https://doi.org/10.1016/j.jcat.2004.11.016
  10. Fatriasari, W., Nurhamzah, F., Raniya, R., Laksana, R.P.B., Anita, S.H., Iswanto, A.H., Hermiati, E. 2020. Enzymatic hydrolysis performance of biomass by the addition of a lignin based biosurfactant. Journal of the Korean Wood Science and Technology 48(5): 651-665. https://doi.org/10.5658/WOOD.2020.48.5.651
  11. Fusaro, M.B., Chagnault, V., Postel, D. 2015. Reactivity of D-fructose and D-xylose in acidic media in homogeneous phases. Carbohydrate Research 409: 9-19. https://doi.org/10.1016/j.carres.2015.03.012
  12. Girio, F.M., Fonseca, C., Carvalheiro, F., Duarte, L.C., Marques, S., Bogel-Lukasik, R. 2010. Hemicelluloses for fuel ethanol: A review. Bioresource Technology 101(13): 4775-4800. https://doi.org/10.1016/j.biortech.2010.01.088
  13. Girisuta, B., Janssen, L.P.B.M., Heeres, H.J. 2006. Green chemicals: A kinetic study on the conversion of glucose to levulinic acid. Chemical Engineering Re- search and Design 84(5): 339-349. https://doi.org/10.1205/cherd05038
  14. Girisuta, B., Janssen, L.P.B.M., Heeres, H.J. 2007. Kinetic study on the acid-catalyzed hydrolysis of cellulose to levulinic acid. Industrial & Engineering Chemistry Research 46(6): 1696-1708. https://doi.org/10.1021/ie061186z
  15. Han, S.Y., Park, C.W., Kwon, G.J., Kim, J.H., Kim, N.H., Lee, S.H. 2020. Effect of [EMIM] Ac recycling on Salix gracilistyla Miq. pretreatment for enzymatic saccharification. Journal of the Korean Wood Science and Technology 48(3): 405-413. https://doi.org/10.5658/WOOD.2020.48.3.405
  16. Harris, D.W., Feather, M.S. 1973. Evidence for a C-2→C-1 intramolecular hydrogen-transfer during the acid-catalyzed isomerization of D-glucose to D-fructose ag. Carbohydrate Research 30(2): 359-365. https://doi.org/10.1016/S0008-6215(00)81822-4
  17. Harris, D.W., Feather, M.S. 1975. Mechanism of the interconversion of D-glucose, D-mannose, and D-fructose in acid solution. Journal of the American Chemical Society 97(1): 178-181. https://doi.org/10.1021/ja00834a031
  18. Helm, R.F., Young, R.A., Conner, A.H. 1989. The reversion reactions of D-glucose during the hydrolysis of cellulose with dilute sulfuric acid. Carbohydrate Research 185(2): 249-260.
  19. Hendriks, A.T.W.M., Zeeman, G. 2009. Pretreatments to enhance the digestibility of lignocellulosic biomass. Bioresource Technology 100(1): 10-18. https://doi.org/10.1016/j.biortech.2008.05.027
  20. Holtzapple, M.T., Humphrey, A.E. 1984. The effect of organosolv pretreatment on the enzymatic hydrolysis of poplar. Biotechnology and Bioengineering 26(7): 670-676. https://doi.org/10.1002/bit.260260706
  21. Hwang, U.T., Bae, J., Lee, T., Hwang, S.Y., Kim, J.C., Park, J., Choi, I.G., Kwak, H.W., Hwang, S.W., Yeo, H. 2021. Analysis of carbonization behavior of hydrochar produced by hydrothermal carbonization of lignin and development of a prediction model for carbonization degree using near-infrared spectroscopy. Journal of the Korean Wood Science and Technology 49(3): 213-225. https://doi.org/10.5658/WOOD.2021.49.3.213
  22. Iswanto, A.H., Tarigan, F.O., Susilowati, A., Darwis, A., Fatriasari, W. 2021. Wood chemical compositions of raru species originating from Central Tapanuli, North Sumatra, Indonesia: Effect of differences in wood species and log positions. Journal of the Korean Wood Science and Technology 49(5): 416-429.
  23. Jang, S.K., Jeong, H.S., Hong, C.Y., Kim, H.Y., Ryu, G.H., Yeo, H., Choi, J.W., Choi, I.G. 2015. Changes of furfural and levulinic acid yield from small-diameter Quercus mongolica depending on dilute acid pretreatment conditions. Journal of the Korean Wood Science and Technology 43(6): 838-850.
  24. Jing, Q., Lu, X. 2007. Kinetics of non-catalyzed decomposition of D-xylose in high temperature liquid water. Chinese Journal of Chemical Engineering 15(5): 666-669. https://doi.org/10.1016/S1004-9541(07)60143-8
  25. Jung, J.Y., Ha, S.Y., Yang, J.K. 2022. Effect of steam explosion condition on the improvement of physicochemical properties of pine chips for feed additives. Journal of the Korean Wood Science and Technology 50(1): 59-67. https://doi.org/10.5658/WOOD.2022.50.1.59
  26. Kabyemela, B.M., Adschiri, T., Malaluan, R.M., Arai, K. 1997. Kinetics of glucose epimerization and decomposition in subcritical and supercritical water. Industrial & Engineering Chemistry Research 36(5): 1552-1558. https://doi.org/10.1021/ie960250h
  27. Kang, S., Fu, J., Zhang, G. 2018. From lignocellulosic biomass to levulinic acid: A review on acid-catalyzed hydrolysis. Renewable and Sustainable Energy Reviews 94: 340-362. https://doi.org/10.1016/j.rser.2018.06.016
  28. Kim, H.Y., Gwak, K.S., Jang, S.K., Ryu, K.O., Yeo, H., Choi, I.G. 2015b. Organosolv pretreatment of slurry composting and biofiltration of liquid fertilizer-treated yellow poplar for sugar production. Journal of the Korean Wood Science and Technology 43(5): 578-590. https://doi.org/10.5658/WOOD.2015.43.5.578
  29. Kim, H.Y., Gwak, K.S., Kim, H.Y., Ryu, K.O., Kim, P.G., Cho, D.H., Choi, J.Y., Choi, I.G. 2011. Effect of treatment amounts of slurry composting and biofiltration liquid fertilizer on growth characteristics and bioethanol production of yellow poplar. Journal of the Korean Wood Science and Technology 39(6): 459-468. https://doi.org/10.5658/WOOD.2011.39.6.459
  30. Kim, H.Y., Hong, C.Y., Kim, S.H., Yeo, H., Choi, I.G. 2015a. Optimization of the organosolv pretreatment of yellow poplar for bioethanol production by response surface methodology. Journal of the Korean Wood Science and Technology 43(5): 600-612.
  31. Kuster, B.F.M. 1990. 5-Hydroxymethylfurfural (HMF). A review Focusing on its manufacture. Starch 42(8): 314-321. https://doi.org/10.1002/star.19900420808
  32. Mamman, A.S., Lee, J.M., Kim, Y.C., Hwang, I.T., Park, N.J., Hwang, Y.K., Chang, J.S., Hwang, J.S. 2008. Furfural: Hemicellulose/xylose derived biochemical. Biofuels Bioproducts & Biorefining 2(5): 438-454. https://doi.org/10.1002/bbb.95
  33. Maulana, M.I., Murda, R.A., Purusatama, B.D., Sari, R.K., Nawawi, D.S., Nikmatin, S., Hidayat, W., Lee, S.H., Febrianto, F., Kim, N.H. 2021. Effect of alkali-washing at different concentration on the chemical compositions of the steam treated bamboo strands. Journal of the Korean Wood Science and Technology 49(1): 14-22. https://doi.org/10.5658/WOOD.2021.49.1.14
  34. Min, B.C., Koo, B.W., Gwak, K.S., Yeo, H.M., Choi, J.W., Choi, I.G. 2011. Effects of dilute acid pretreatment on enzyme adsorption and surface morphology of Liriodendron tulipifera. Journal of the Korean Wood Science and Technology 39(2): 187-195. https://doi.org/10.5658/WOOD.2011.39.2.187
  35. Nimlos, M.R., Qian, X., Davis, M., Himmel, M.E., Johnson, D.K. 2006. Energetics of xylose decomposition as determined using quantum mechanics modeling. The Journal of Physical Chemistry A 110 (42): 11824-11838. https://doi.org/10.1021/jp0626770
  36. Oefner, P.J., Lanziner, A.H., Bonn, G., Bobleter, O. 1992. Quantitative studies on furfural and organic acid formation during hydrothermal, acidic and alkaline degradation of D-xylose. Monatshefte fur Chemie/Chemical Monthly 123(6): 547-556. https://doi.org/10.1007/BF00816848
  37. Park, Y., Jeon, W.S., Yoon, S.M., Lee, H.M., Hwang, W.J. 2020. Evaluation of cell-wall microstructure and anti-swelling effectiveness of heat-treated larch wood. Journal of the Korean Wood Science and Technology 48(6): 780-790. https://doi.org/10.5658/WOOD.2020.48.6.780
  38. Qian, X., Nimlos, M.R., Johnson, D.K., Himmel, M.E. 2005. Acidic sugar degradation pathways: An ab initio molecular dynamics study. Applied Biochemistry and Biotechnology 124: 989-997. https://doi.org/10.1385/ABAB:124:1-3:0989
  39. Rackemann, D.W., Bartley, J.P., Doherty, W.O.S. 2014. Methanesulfonic acid-catalyzed conversion of glucose and xylose mixtures to levulinic acid and furfural. Industrial Crops and Products 52: 46-57. https://doi.org/10.1016/j.indcrop.2013.10.026
  40. Rackemann, D.W., Doherty, W.O.S. 2011. The convertsion of lignocellulosics to levulinic acid. Biofuels Bioproducts and Biorefining 5(2): 198-214. https://doi.org/10.1002/bbb.267
  41. Ryu, G.H., Jeong, H.S., Jang, S.K., Hong, C.Y., Choi, J.W., Choi, I.G. 2016. Investigation of furfural yields of liquid hydrolyzate during dilute acid pretreatment process on Quercus mongolica using response surface methodology. Journal of the Korean Wood Science and Technology 44(1): 85-95. https://doi.org/10.5658/WOOD.2016.44.1.85
  42. Saha, B.C. 2003. Hemicellulose bioconversion. Journal of Industrial Microbiology and Biotechnology 30(5): 279-291. https://doi.org/10.1007/s10295-003-0049-x
  43. Sasaki, M., Fang, Z., Fukushima, Y., Adschiri, T., Arai, K. 2000. Dissolution and hydrolysis of cellulose in subcritical and supercritical water. Industrial & Engineering Chemistry Research 39(8): 2883-2890. https://doi.org/10.1021/ie990690j
  44. Schulz, H.R., Acosta, A.P., Barbosa, K.T., Junior, M.A.P.S., Gallio, E., Delucis, R.A., Gatto, D.A. 2021. Chemical, mechanical, thermal, and colorimetric features of the thermally treated Eucalyptus grandis wood planted in Brazil. Journal of the Korean Wood Science and Technology 49(3): 226-233. https://doi.org/10.5658/WOOD.2021.49.3.226
  45. Shin, G.J., Jeong, S.Y., Lee, H.J., Lee, J.W. 2015. Furfural production and recovery by two-stage acid treatment of lignocellulosic biomass. Journal of the Korean Wood Science and Technology 43(1): 76-85. https://doi.org/10.5658/WOOD.2015.43.1.76
  46. Shin, S.J. 2013. Quantitative analysis of reaction pro- ducts from glucose and xylose in acidic aqueous medium by 1H-NMR spectroscopic method. Journal of the Korean Wood Science and Technology 41(4): 287-292. https://doi.org/10.5658/WOOD.2013.41.4.287
  47. Sluiter, A., Hames, B., Ruiz, R., Scarlata, C., Sluiter, J., Templeton, D. 2008a. Determination of Sugars, Byproducts, and Degradation Products in Liquid Fraction Process Samples. Laboratory Analytical Procedures [NREL], Golden, CO, USA.
  48. Sluiter, A., Hames, B., Ruiz, R., Scarlata, C., Sluiter, J., Templeton, D., Crocker, D. 2008b. Determination of Structural Carbohydrates and Lignin in Biomass. Laboratory Analytical Procedures [NREL], Golden, CO, USA.
  49. Takeuchi, Y., Jin, F., Tohji, K., Enomoto, H. 2008. Acid catalytic hydrothermal conversion of carbohydrate biomass into useful substances. Journal of Materials Science 43(7): 2472-2475.
  50. Weingarten, R., Cho, J., Conner, W.C. Jr., Huber, G.W. 2010. Kinetics of furfural production by dehydration of xylose in a biphasic reactor with microwave heating. Green Chemistry 12(8): 1423-1429. https://doi.org/10.1039/c003459b
  51. Wildschut, J., Arentz, J., Rasrendra, C.B., Venderbosch, R.H., Heeres, H.J. 2009. Catalytic hydrotreatment of fast pyrolysis oil: Model studies on reaction pathways for the carbohydrate fraction. Environmental Progress & Sustainable Energy 28(3): 450-460.
  52. Ya'aini, N., Amin, N.A.S., Endud, S. 2013. Characterization and performance of hybrid catalysts for levulinic acid production from glucose. Microporous and Mesoporous Materials 171: 14-23. https://doi.org/10.1016/j.micromeso.2013.01.002
  53. Yang, W., Li, P., Bo, D., Chang, H., Wang, X., Zhu, T. 2013. Optimization of furfural production from Dxylose with formic acid as catalyst in a reactive extraction system. Bioresource Technology 133: 361-369. https://doi.org/10.1016/j.biortech.2013.01.127
  54. Yemis, O., Mazza, G. 2011. Acid-catalyzed conversion of xylose, xylan and straw into furfural by microwave-assisted reaction. Bioresource Technology 102 (15): 7371-7378. https://doi.org/10.1016/j.biortech.2011.04.050
  55. Yin, S., Pan, Y., Tan, Z. 2011. Hydrothermal conversion of cellulose to 5-hydroxymethyl furfural. International Journal of Green Energy 8(2): 234-247. https://doi.org/10.1080/15435075.2010.548888
  56. Zeitsch, K.J. 2000. The Chemistry and Technology of Furfural and Its Many By-products. Elsevier Science, Amsterdam, Netherland.
  57. Zendrato, H.M., Devi, Y.S., Masruchin, N., Wistara, N.J. 2021. Soda pulping of torch ginger stem: Promising source of nonwood-based cellulose. Journal of the Korean Wood Science and Technology 49(4): 287-298. https://doi.org/10.5658/WOOD.2021.49.4.287
  58. Zhang, Z., Harrison, M.D., Rackemann, D.W., Doherty, W.O.S., O'Hara, I.M. 2016. Organosolv pretreatment of plant biomass for enhanced enzymatic saccharification. Green Chemistry 18(2): 360-381. https://doi.org/10.1039/c5gc02034d