DOI QR코드

DOI QR Code

Novel GPR43 Agonists Exert an Anti-Inflammatory Effect in a Colitis Model

  • Park, Bi-Oh (Disease Target Structure Research Center, Korea Research Institute of Bioscience and Biotechnology) ;
  • Kang, Jong Soon (Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology) ;
  • Paudel, Suresh (College of Pharmacy, Korea University) ;
  • Park, Sung Goo (Disease Target Structure Research Center, Korea Research Institute of Bioscience and Biotechnology) ;
  • Park, Byoung Chul (Disease Target Structure Research Center, Korea Research Institute of Bioscience and Biotechnology) ;
  • Han, Sang-Bae (College of Pharmacy, Chungbuk National University) ;
  • Kwak, Young-Shin (College of Pharmacy, Korea University) ;
  • Kim, Jeong-Hoon (Disease Target Structure Research Center, Korea Research Institute of Bioscience and Biotechnology) ;
  • Kim, Sunhong (Disease Target Structure Research Center, Korea Research Institute of Bioscience and Biotechnology)
  • Received : 2021.04.22
  • Accepted : 2021.05.26
  • Published : 2022.01.01

Abstract

GPR43 (also known as FFAR2), a metabolite-sensing G-protein-coupled receptor stimulated by short-chain fatty acid (SCFA) ligands is involved in innate immunity and metabolism. GPR43 couples with Gαi/o and Gαq/11 heterotrimeric proteins and is capable of decreasing cyclic AMP and inducing Ca2+ flux. The GPR43 receptor has additionally been shown to bind β-arrestin 2 and inhibit inflammatory pathways, such as NF-κB. However, GPR43 shares the same ligands as GPR41, including acetate, propionate, and butyrate, and determination of its precise functions in association with endogenous ligands, such as SCFAs alone, therefore remains a considerable challenge. In this study, we generated novel synthetic agonists that display allosteric modulatory effects on GPR43 and downregulate NF-κB activity. In particular, the potency of compound 187 was significantly superior to that of pre-existing compounds in vitro. However, in the colitis model in vivo, compound 110 induced more potent attenuation of inflammation. These novel allosteric agonists of GPR43 clearly display anti-inflammatory potential, supporting their clinical utility as therapeutic drugs.

Keywords

Acknowledgement

This work was supported by a grant (NRF-2019M3E5D4069882) from the National Research Foundation, Ministry of Science and ICT, and a grant from the KRIBB Initiative Program.

References

  1. Agus, A., Denizot, J., Thevenot, J., Martinez-Medina, M., Massier, S., Sauvanet, P., Bernalier-Donadille, A., Denis, S., Hofman, P., Bonnet, R., Billard, E. and Barnich, N. (2016) Western diet induces a shift in microbiota composition enhancing susceptibility to Adherent-Invasive E. coli infection and intestinal inflammation. Sci. Rep. 6, 19032. https://doi.org/10.1038/srep19032
  2. Antunes, K. H., Fachi, J. L., de Paula, R., da Silva, E. F., Pral, L. P., Dos Santos, A. A., Dias, G. B. M., Vargas, J. E., Puga, R., Mayer, F. Q., Maito, F., Zarate-Blades, C. R., Ajami, N. J., Sant'Ana, M. R., Candreva, T., Rodrigues, H. G., Schmiele, M., Silva Clerici, M. T. P., Proenca-Modena, J. L., Vieira, A. T., Mackay, C. R., Mansur, D., Caballero, M. T., Marzec, J., Li, J., Wang, X., Bell, D., Polack, F. P., Kleeberger, S. R., Stein, R. T., Vinolo, M. A. R. and de Souza, A. P. D. (2019) Microbiota-derived acetate protects against respiratory syncytial virus infection through a GPR43-type 1 interferon response. Nat. Commun. 10, 3273. https://doi.org/10.1038/s41467-019-11152-6
  3. Barker, G., Davenport, R., Downham, R., Farnaby, W., Goldby, A., Hannah, D., Harrison, D. and Willems, H. (2015) 3-Substitute 2-Amino-indole derivatives. World patent WO 2015/198045A1. 2015 Dec 30. Japan.
  4. Bolognini, D., Moss, C. E., Nilsson, K., Petersson, A. U., Donnelly, I., Sergeev, E., Konig, G. M., Kostenis, E., Kurowska-Stolarska, M., Miller, A., Dekker, N., Tobin, A. B. and Milligan, G. (2016) A novel allosteric activator of free fatty acid 2 receptor displays unique gifunctional bias. J. Biol. Chem. 291, 18915-18931. https://doi.org/10.1074/jbc.M116.736157
  5. Brown, A. J., Goldsworthy, S. M., Barnes, A. A., Eilert, M. M., Tcheang, L., Daniels, D., Muir, A. I., Wigglesworth, M. J., Kinghorn, I., Fraser, N. J., Pike, N. B., Strum, J. C., Steplewski, K. M., Murdock, P. R., Holder, J. C., Marshall, F. H., Szekeres, P. G., Wilson, S., Ignar, D. M., Foord, S. M., Wise, A. and Dowell, S. J. (2003) The orphan G protein-coupled receptors GPR41 and GPR43 are activated by propionate and other short chain carboxylic acids. J. Biol. Chem. 278, 11312-11319. https://doi.org/10.1074/jbc.M211609200
  6. Cox, M. A., Jackson, J., Stanton, M., Rojas-Triana, A., Bober, L., Laverty, M., Yang, X., Zhu, F., Liu, J., Wang, S., Monsma, F., Vassileva, G., Maguire, M., Gustafson, E., Bayne, M., Chou, C. C., Lundell, D. and Jenh, C. H. (2009) Short-chain fatty acids act as antiinflammatory mediators by regulating prostaglandin E(2) and cytokines. World J. Gastroenterol. 15, 5549-5557. https://doi.org/10.3748/wjg.15.5549
  7. de Mattos, B. R., Garcia, M. P., Nogueira, J. B., Paiatto, L. N., Albuquerque, C. G., Souza, C. L., Fernandes, L. G., Tamashiro, W. M. and Simioni, P. U. (2015) Inflammatory bowel disease: an overview of immune mechanisms and biological treatments. Mediators Inflamm. 2015, 493012. https://doi.org/10.1155/2015/493012
  8. den Besten, G., van Eunen, K., Groen, A. K., Venema, K., Reijngoud, D. J. and Bakker, B. M. (2013) The role of short-chain fatty acids in the interplay between diet, gut microbiota, and host energy metabolism. J. Lipid Res. 54, 2325-2340. https://doi.org/10.1194/jlr.R036012
  9. Di Sabatino, A., Morera, R., Ciccocioppo, R., Cazzola, P., Gotti, S., Tinozzi, F. P., Tinozzi, S. and Corazza, G. R. (2005) Oral butyrate for mildly to moderately active Crohn's disease. Aliment. Pharmacol. Ther. 22, 789-794. https://doi.org/10.1111/j.1365-2036.2005.02639.x
  10. Hudson, B. D., Tikhonova, I. G., Pandey, S. K., Ulven, T. and Milligan, G. (2012) Extracellular ionic locks determine variation in constitutive activity and ligand potency between species orthologs of the free fatty acid receptors FFA2 and FFA3. J. Biol. Chem. 287, 41195-41209. https://doi.org/10.1074/jbc.M112.396259
  11. Khan, M. T., Nieuwdorp, M. and Backhed, F. (2014) Microbial modulation of insulin sensitivity. Cell Metab. 20, 753-760. https://doi.org/10.1016/j.cmet.2014.07.006
  12. Kim, M. H., Kang, S. G., Park, J. H., Yanagisawa, M. and Kim, C. H. (2013) Short-chain fatty acids activate GPR41 and GPR43 on intestinal epithelial cells to promote inflammatory responses in mice. Gastroenterology 145, 396-406.e10. https://doi.org/10.1053/j.gastro.2013.04.056
  13. Kimura, I., Ozawa, K., Inoue, D., Imamura, T., Kimura, K., Maeda, T., Terasawa, K., Kashihara, D., Hirano, K., Tani, T., Takahashi, T., Miyauchi, S., Shioi, G., Inoue, H. and Tsujimoto, G. (2013) The gut microbiota suppresses insulin-mediated fat accumulation via the short-chain fatty acid receptor GPR43. Nat. Commun. 4, 1829. https://doi.org/10.1038/ncomms2852
  14. Lee, S. U., In, H. J., Kwon, M. S., Park, B. O., Jo, M., Kim, M. O., Cho, S., Lee, S., Lee, H. J., Kwak, Y. S. and Kim, S. (2013) Beta-arrestin 2 mediates G protein-coupled receptor 43 signals to nuclear factor-kappaB. Biol. Pharm. Bull. 36, 1754-1759. https://doi.org/10.1248/bpb.b13-00312
  15. Lee, T., Schwandner, R., Swaminath, G., Weiszmann, J., Cardozo, M., Greenberg, J., Jaeckel, P., Ge, H., Wang, Y., Jiao, X., Liu, J., Kayser, F., Tian, H. and Li, Y. (2008) Identification and functional characterization of allosteric agonists for the G protein-coupled receptor FFA2. Mol. Pharmacol. 74, 1599-1609. https://doi.org/10.1124/mol.108.049536
  16. Macia, L., Tan, J., Vieira, A. T., Leach, K., Stanley, D., Luong, S., Maruya, M., Ian McKenzie, C., Hijikata, A., Wong, C., Binge, L., Thorburn, A. N., Chevalier, N., Ang, C., Marino, E., Robert, R., Offermanns, S., Teixeira, M. M., Moore, R. J., Flavell, R. A., Fagarasan, S. and Mackay, C. R. (2015) Metabolite-sensing receptors GPR43 and GPR109A facilitate dietary fibre-induced gut homeostasis through regulation of the inflammasome. Nat. Commun. 6, 6734. https://doi.org/10.1038/ncomms7734
  17. Maslowski, K. M., Vieira, A. T., Ng, A., Kranich, J., Sierro, F., Yu, D., Schilter, H. C., Rolph, M. S., Mackay, F., Artis, D., Xavier, R. J., Teixeira, M. M. and Mackay, C. R. (2009) Regulation of inflammatory responses by gut microbiota and chemoattractant receptor GPR43. Nature 461, 1282-1286. https://doi.org/10.1038/nature08530
  18. Masui, R., Sasaki, M., Funaki, Y., Ogasawara, N., Mizuno, M., Iida, A., Izawa, S., Kondo, Y., Ito, Y., Tamura, Y., Yanamoto, K., Noda, H., Tanabe, A., Okaniwa, N., Yamaguchi, Y., Iwamoto, T. and Kasugai, K. (2013) G protein-coupled receptor 43 moderates gut inflammation through cytokine regulation from mononuclear cells. Inflamm. Bowel Dis. 19, 2848-2856. https://doi.org/10.1097/01.MIB.0000435444.14860.ea
  19. McNelis, J. C., Lee, Y. S., Mayoral, R., van der Kant, R., Johnson, A. M., Wollam, J. and Olefsky, J. M. (2015) GPR43 potentiates betacell function in obesity. Diabetes 64, 3203-3217. https://doi.org/10.2337/db14-1938
  20. Nakajima, A., Nakatani, A., Hasegawa, S., Irie, J., Ozawa, K., Tsujimoto, G., Suganami, T., Itoh, H. and Kimura, I. (2017) The short chain fatty acid receptor GPR43 regulates inflammatory signals in adipose tissue M2-type macrophages. PLoS ONE 12, e0179696. https://doi.org/10.1371/journal.pone.0179696
  21. Parada Venegas, D., De la Fuente, M. K., Landskron, G., Gonzalez, M. J., Quera, R., Dijkstra, G., Harmsen, H. J. M., Faber, K. N. and Hermoso, M. A. (2019) Short chain fatty acids (SCFAs)-mediated gut epithelial and immune regulation and its relevance for inflammatory bowel diseases. Front. Immunol. 10, 277. https://doi.org/10.3389/fimmu.2019.00277
  22. Park, B. O., Kim, S. H., Kong, G. Y., Kim, D. H., Kwon, M. S., Lee, S. U., Kim, M. O., Cho, S., Lee, S., Lee, H. J., Han, S. B., Kwak, Y. S., Lee, S. B. and Kim, S. (2016) Selective novel inverse agonists for human GPR43 augment GLP-1 secretion. Eur. J. Pharmacol. 771, 1-9. https://doi.org/10.1016/j.ejphar.2015.12.010
  23. Sina, C., Gavrilova, O., Forster, M., Till, A., Derer, S., Hildebrand, F., Raabe, B., Chalaris, A., Scheller, J., Rehmann, A., Franke, A., Ott, S., Hasler, R., Nikolaus, S., Folsch, U. R., Rose-John, S., Jiang, H. P., Li, J., Schreiber, S. and Rosenstiel, P. (2009) G protein-coupled receptor 43 is essential for neutrophil recruitment during intestinal inflammation. J. Immunol. 183, 7514-7522. https://doi.org/10.4049/jimmunol.0900063
  24. Smith, P. M., Howitt, M. R., Panikov, N., Michaud, M., Gallini, C. A., Bohlooly, Y. M., Glickman, J. N. and Garrett, W. S. (2013) The microbial metabolites, short-chain fatty acids, regulate colonic Treg cell homeostasis. Science 341, 569-573. https://doi.org/10.1126/science.1241165
  25. Tedelind, S., Westberg, F., Kjerrulf, M. and Vidal, A. (2007) Anti-inflammatory properties of the short-chain fatty acids acetate and propionate: a study with relevance to inflammatory bowel disease. World J. Gastroenterol. 13, 2826-2832. https://doi.org/10.3748/wjg.v13.i20.2826
  26. Tolhurst, G., Heffron, H., Lam, Y. S., Parker, H. E., Habib, A. M., Diakogiannaki, E., Cameron, J., Grosse, J., Reimann, F. and Gribble, F. M. (2012) Short-chain fatty acids stimulate glucagon-like peptide-1 secretion via the G-protein-coupled receptor FFAR2. Diabetes 61, 364-371. https://doi.org/10.2337/db11-1019
  27. Topping, D. L. and Clifton, P. M. (2001) Short-chain fatty acids and human colonic function: roles of resistant starch and nonstarch polysaccharides. Physiol. Rev. 81, 1031-1064. https://doi.org/10.1152/physrev.2001.81.3.1031
  28. Trompette, A., Gollwitzer, E. S., Yadava, K., Sichelstiel, A. K., Sprenger, N., Ngom-Bru, C., Blanchard, C., Junt, T., Nicod, L. P., Harris, N. L. and Marsland, B. J. (2014) Gut microbiota metabolism of dietary fiber influences allergic airway disease and hematopoiesis. Nat. Med. 20, 159-166. https://doi.org/10.1038/nm.3444
  29. Wang, Y., Jiao, X., Kayser, F., Liu, J., Wang, Z., Wanska, M., Greenberg, J., Weiszmann, J., Ge, H., Tian, H., Wong, S., Schwandner, R., Lee, T. and Li, Y. (2010) The first synthetic agonists of FFA2: Discovery and SAR of phenylacetamides as allosteric modulators. Bioorg. Med. Chem. Lett. 20, 493-498. https://doi.org/10.1016/j.bmcl.2009.11.112
  30. Wirtz, S., Neufert, C., Weigmann, B. and Neurath, M. F. (2007) Chemically induced mouse models of intestinal inflammation. Nat. Protoc. 2, 541-546. https://doi.org/10.1038/nprot.2007.41