Acknowledgement
This work was supported by a grant (NRF-2019M3E5D4069882) from the National Research Foundation, Ministry of Science and ICT, and a grant from the KRIBB Initiative Program.
References
- Agus, A., Denizot, J., Thevenot, J., Martinez-Medina, M., Massier, S., Sauvanet, P., Bernalier-Donadille, A., Denis, S., Hofman, P., Bonnet, R., Billard, E. and Barnich, N. (2016) Western diet induces a shift in microbiota composition enhancing susceptibility to Adherent-Invasive E. coli infection and intestinal inflammation. Sci. Rep. 6, 19032. https://doi.org/10.1038/srep19032
- Antunes, K. H., Fachi, J. L., de Paula, R., da Silva, E. F., Pral, L. P., Dos Santos, A. A., Dias, G. B. M., Vargas, J. E., Puga, R., Mayer, F. Q., Maito, F., Zarate-Blades, C. R., Ajami, N. J., Sant'Ana, M. R., Candreva, T., Rodrigues, H. G., Schmiele, M., Silva Clerici, M. T. P., Proenca-Modena, J. L., Vieira, A. T., Mackay, C. R., Mansur, D., Caballero, M. T., Marzec, J., Li, J., Wang, X., Bell, D., Polack, F. P., Kleeberger, S. R., Stein, R. T., Vinolo, M. A. R. and de Souza, A. P. D. (2019) Microbiota-derived acetate protects against respiratory syncytial virus infection through a GPR43-type 1 interferon response. Nat. Commun. 10, 3273. https://doi.org/10.1038/s41467-019-11152-6
- Barker, G., Davenport, R., Downham, R., Farnaby, W., Goldby, A., Hannah, D., Harrison, D. and Willems, H. (2015) 3-Substitute 2-Amino-indole derivatives. World patent WO 2015/198045A1. 2015 Dec 30. Japan.
- Bolognini, D., Moss, C. E., Nilsson, K., Petersson, A. U., Donnelly, I., Sergeev, E., Konig, G. M., Kostenis, E., Kurowska-Stolarska, M., Miller, A., Dekker, N., Tobin, A. B. and Milligan, G. (2016) A novel allosteric activator of free fatty acid 2 receptor displays unique gifunctional bias. J. Biol. Chem. 291, 18915-18931. https://doi.org/10.1074/jbc.M116.736157
- Brown, A. J., Goldsworthy, S. M., Barnes, A. A., Eilert, M. M., Tcheang, L., Daniels, D., Muir, A. I., Wigglesworth, M. J., Kinghorn, I., Fraser, N. J., Pike, N. B., Strum, J. C., Steplewski, K. M., Murdock, P. R., Holder, J. C., Marshall, F. H., Szekeres, P. G., Wilson, S., Ignar, D. M., Foord, S. M., Wise, A. and Dowell, S. J. (2003) The orphan G protein-coupled receptors GPR41 and GPR43 are activated by propionate and other short chain carboxylic acids. J. Biol. Chem. 278, 11312-11319. https://doi.org/10.1074/jbc.M211609200
- Cox, M. A., Jackson, J., Stanton, M., Rojas-Triana, A., Bober, L., Laverty, M., Yang, X., Zhu, F., Liu, J., Wang, S., Monsma, F., Vassileva, G., Maguire, M., Gustafson, E., Bayne, M., Chou, C. C., Lundell, D. and Jenh, C. H. (2009) Short-chain fatty acids act as antiinflammatory mediators by regulating prostaglandin E(2) and cytokines. World J. Gastroenterol. 15, 5549-5557. https://doi.org/10.3748/wjg.15.5549
- de Mattos, B. R., Garcia, M. P., Nogueira, J. B., Paiatto, L. N., Albuquerque, C. G., Souza, C. L., Fernandes, L. G., Tamashiro, W. M. and Simioni, P. U. (2015) Inflammatory bowel disease: an overview of immune mechanisms and biological treatments. Mediators Inflamm. 2015, 493012. https://doi.org/10.1155/2015/493012
- den Besten, G., van Eunen, K., Groen, A. K., Venema, K., Reijngoud, D. J. and Bakker, B. M. (2013) The role of short-chain fatty acids in the interplay between diet, gut microbiota, and host energy metabolism. J. Lipid Res. 54, 2325-2340. https://doi.org/10.1194/jlr.R036012
- Di Sabatino, A., Morera, R., Ciccocioppo, R., Cazzola, P., Gotti, S., Tinozzi, F. P., Tinozzi, S. and Corazza, G. R. (2005) Oral butyrate for mildly to moderately active Crohn's disease. Aliment. Pharmacol. Ther. 22, 789-794. https://doi.org/10.1111/j.1365-2036.2005.02639.x
- Hudson, B. D., Tikhonova, I. G., Pandey, S. K., Ulven, T. and Milligan, G. (2012) Extracellular ionic locks determine variation in constitutive activity and ligand potency between species orthologs of the free fatty acid receptors FFA2 and FFA3. J. Biol. Chem. 287, 41195-41209. https://doi.org/10.1074/jbc.M112.396259
- Khan, M. T., Nieuwdorp, M. and Backhed, F. (2014) Microbial modulation of insulin sensitivity. Cell Metab. 20, 753-760. https://doi.org/10.1016/j.cmet.2014.07.006
- Kim, M. H., Kang, S. G., Park, J. H., Yanagisawa, M. and Kim, C. H. (2013) Short-chain fatty acids activate GPR41 and GPR43 on intestinal epithelial cells to promote inflammatory responses in mice. Gastroenterology 145, 396-406.e10. https://doi.org/10.1053/j.gastro.2013.04.056
- Kimura, I., Ozawa, K., Inoue, D., Imamura, T., Kimura, K., Maeda, T., Terasawa, K., Kashihara, D., Hirano, K., Tani, T., Takahashi, T., Miyauchi, S., Shioi, G., Inoue, H. and Tsujimoto, G. (2013) The gut microbiota suppresses insulin-mediated fat accumulation via the short-chain fatty acid receptor GPR43. Nat. Commun. 4, 1829. https://doi.org/10.1038/ncomms2852
- Lee, S. U., In, H. J., Kwon, M. S., Park, B. O., Jo, M., Kim, M. O., Cho, S., Lee, S., Lee, H. J., Kwak, Y. S. and Kim, S. (2013) Beta-arrestin 2 mediates G protein-coupled receptor 43 signals to nuclear factor-kappaB. Biol. Pharm. Bull. 36, 1754-1759. https://doi.org/10.1248/bpb.b13-00312
- Lee, T., Schwandner, R., Swaminath, G., Weiszmann, J., Cardozo, M., Greenberg, J., Jaeckel, P., Ge, H., Wang, Y., Jiao, X., Liu, J., Kayser, F., Tian, H. and Li, Y. (2008) Identification and functional characterization of allosteric agonists for the G protein-coupled receptor FFA2. Mol. Pharmacol. 74, 1599-1609. https://doi.org/10.1124/mol.108.049536
- Macia, L., Tan, J., Vieira, A. T., Leach, K., Stanley, D., Luong, S., Maruya, M., Ian McKenzie, C., Hijikata, A., Wong, C., Binge, L., Thorburn, A. N., Chevalier, N., Ang, C., Marino, E., Robert, R., Offermanns, S., Teixeira, M. M., Moore, R. J., Flavell, R. A., Fagarasan, S. and Mackay, C. R. (2015) Metabolite-sensing receptors GPR43 and GPR109A facilitate dietary fibre-induced gut homeostasis through regulation of the inflammasome. Nat. Commun. 6, 6734. https://doi.org/10.1038/ncomms7734
- Maslowski, K. M., Vieira, A. T., Ng, A., Kranich, J., Sierro, F., Yu, D., Schilter, H. C., Rolph, M. S., Mackay, F., Artis, D., Xavier, R. J., Teixeira, M. M. and Mackay, C. R. (2009) Regulation of inflammatory responses by gut microbiota and chemoattractant receptor GPR43. Nature 461, 1282-1286. https://doi.org/10.1038/nature08530
- Masui, R., Sasaki, M., Funaki, Y., Ogasawara, N., Mizuno, M., Iida, A., Izawa, S., Kondo, Y., Ito, Y., Tamura, Y., Yanamoto, K., Noda, H., Tanabe, A., Okaniwa, N., Yamaguchi, Y., Iwamoto, T. and Kasugai, K. (2013) G protein-coupled receptor 43 moderates gut inflammation through cytokine regulation from mononuclear cells. Inflamm. Bowel Dis. 19, 2848-2856. https://doi.org/10.1097/01.MIB.0000435444.14860.ea
- McNelis, J. C., Lee, Y. S., Mayoral, R., van der Kant, R., Johnson, A. M., Wollam, J. and Olefsky, J. M. (2015) GPR43 potentiates betacell function in obesity. Diabetes 64, 3203-3217. https://doi.org/10.2337/db14-1938
- Nakajima, A., Nakatani, A., Hasegawa, S., Irie, J., Ozawa, K., Tsujimoto, G., Suganami, T., Itoh, H. and Kimura, I. (2017) The short chain fatty acid receptor GPR43 regulates inflammatory signals in adipose tissue M2-type macrophages. PLoS ONE 12, e0179696. https://doi.org/10.1371/journal.pone.0179696
- Parada Venegas, D., De la Fuente, M. K., Landskron, G., Gonzalez, M. J., Quera, R., Dijkstra, G., Harmsen, H. J. M., Faber, K. N. and Hermoso, M. A. (2019) Short chain fatty acids (SCFAs)-mediated gut epithelial and immune regulation and its relevance for inflammatory bowel diseases. Front. Immunol. 10, 277. https://doi.org/10.3389/fimmu.2019.00277
- Park, B. O., Kim, S. H., Kong, G. Y., Kim, D. H., Kwon, M. S., Lee, S. U., Kim, M. O., Cho, S., Lee, S., Lee, H. J., Han, S. B., Kwak, Y. S., Lee, S. B. and Kim, S. (2016) Selective novel inverse agonists for human GPR43 augment GLP-1 secretion. Eur. J. Pharmacol. 771, 1-9. https://doi.org/10.1016/j.ejphar.2015.12.010
- Sina, C., Gavrilova, O., Forster, M., Till, A., Derer, S., Hildebrand, F., Raabe, B., Chalaris, A., Scheller, J., Rehmann, A., Franke, A., Ott, S., Hasler, R., Nikolaus, S., Folsch, U. R., Rose-John, S., Jiang, H. P., Li, J., Schreiber, S. and Rosenstiel, P. (2009) G protein-coupled receptor 43 is essential for neutrophil recruitment during intestinal inflammation. J. Immunol. 183, 7514-7522. https://doi.org/10.4049/jimmunol.0900063
- Smith, P. M., Howitt, M. R., Panikov, N., Michaud, M., Gallini, C. A., Bohlooly, Y. M., Glickman, J. N. and Garrett, W. S. (2013) The microbial metabolites, short-chain fatty acids, regulate colonic Treg cell homeostasis. Science 341, 569-573. https://doi.org/10.1126/science.1241165
- Tedelind, S., Westberg, F., Kjerrulf, M. and Vidal, A. (2007) Anti-inflammatory properties of the short-chain fatty acids acetate and propionate: a study with relevance to inflammatory bowel disease. World J. Gastroenterol. 13, 2826-2832. https://doi.org/10.3748/wjg.v13.i20.2826
- Tolhurst, G., Heffron, H., Lam, Y. S., Parker, H. E., Habib, A. M., Diakogiannaki, E., Cameron, J., Grosse, J., Reimann, F. and Gribble, F. M. (2012) Short-chain fatty acids stimulate glucagon-like peptide-1 secretion via the G-protein-coupled receptor FFAR2. Diabetes 61, 364-371. https://doi.org/10.2337/db11-1019
- Topping, D. L. and Clifton, P. M. (2001) Short-chain fatty acids and human colonic function: roles of resistant starch and nonstarch polysaccharides. Physiol. Rev. 81, 1031-1064. https://doi.org/10.1152/physrev.2001.81.3.1031
- Trompette, A., Gollwitzer, E. S., Yadava, K., Sichelstiel, A. K., Sprenger, N., Ngom-Bru, C., Blanchard, C., Junt, T., Nicod, L. P., Harris, N. L. and Marsland, B. J. (2014) Gut microbiota metabolism of dietary fiber influences allergic airway disease and hematopoiesis. Nat. Med. 20, 159-166. https://doi.org/10.1038/nm.3444
- Wang, Y., Jiao, X., Kayser, F., Liu, J., Wang, Z., Wanska, M., Greenberg, J., Weiszmann, J., Ge, H., Tian, H., Wong, S., Schwandner, R., Lee, T. and Li, Y. (2010) The first synthetic agonists of FFA2: Discovery and SAR of phenylacetamides as allosteric modulators. Bioorg. Med. Chem. Lett. 20, 493-498. https://doi.org/10.1016/j.bmcl.2009.11.112
- Wirtz, S., Neufert, C., Weigmann, B. and Neurath, M. F. (2007) Chemically induced mouse models of intestinal inflammation. Nat. Protoc. 2, 541-546. https://doi.org/10.1038/nprot.2007.41