DOI QR코드

DOI QR Code

Low-Temperature Chemical Sintered TiO2 Photoanodes Based on a Binary Liquid Mixture for Flexible Dye-Sensitized Solar Cells

  • Md. Mahbubur, Rahman (Department of Applied Chemistry, Konkuk University) ;
  • Hyeong Cheol, Kang (Department of Energy Materials Science and Engineering, Research Center for Photoenergy Harvesting & Conversion Technology (phct), Dongguk University) ;
  • Kicheon, Yoo (Department of Energy Materials Science and Engineering, Research Center for Photoenergy Harvesting & Conversion Technology (phct), Dongguk University) ;
  • Jae-Joon, Lee (Department of Energy Materials Science and Engineering, Research Center for Photoenergy Harvesting & Conversion Technology (phct), Dongguk University)
  • Received : 2022.03.29
  • Accepted : 2022.06.21
  • Published : 2022.11.30

Abstract

A chemically sintered and binder-free paste of TiO2 nanoparticles (NPs) was prepared using a binary-liquid mixture of 1-octanol and CCl4. The 1:1 (v/v) complex of CCl4 and 1-octanol easily interacted chemically with the TiO2 NPs and induced the formation of a highly viscous paste. The as-prepared binary-liquid paste (PBL)-based TiO2 film exhibited the complete removal of the binary-liquid and residuals with the subsequent low-temperature sintering (~150℃) and UV-O3 treatment. This facilitated the fabrication of TiO2 photoanodes for flexible dye-sensitized solar cells (f-DSSCs). For comparison purposes, pure 1-octanol-based TiO2 paste (PO) with moderate viscosity was prepared. The PBL-based TiO2 film exhibited strong adhesion and high mechanical stability with the conducting oxide coated glass and plastic substrates compared to the PO-based film. The corresponding low-temperature sintered PBL-based f-DSSC showed a power conversion efficiency (PCE) of 3.5%, while it was 2.0% for PO-based f-DSSC. The PBL-based low- and high-temperature (500℃) sintered glass-based rigid DSSCs exhibited the PCE of 6.0 and 6.3%, respectively, while this value was 7.1% for a 500℃ sintered rigid DSSC based on a commercial (or conventional) paste.

Keywords

Acknowledgement

This research was supported by the Technology Development Program to Solve Climate Changes of the National Research Foundation, funded by the Ministry of Science, ICT & Future Planning (NRF-2016M1A2A2940912).

References

  1. B. O'Regan and M. Gratzel, Nature, 1991, 353, 737-740. https://doi.org/10.1038/353737a0
  2. K. Sharma, V. Sharma, and S. S. Sharma, Nanoscale Res. Lett., 2018, 13, 381.
  3. D. Devadiga, M. Selvakumar, P. Shetty, and M. S. Santosh, J. Power Sources, 2021, 493, 229698.
  4. K. Kakiage, Y. Aoyama, T. Yano, K. Oya, J. Fujisawa, and M. Hanaya, Chem. Commun., 2015, 51, 15894-15897. https://doi.org/10.1039/c5cc06759f
  5. J.-M. Ji, H. Zhou, Y. K. Eom, C. H. Kim, and H. K. Kim, Adv. Energy Mater., 2020, 10(15), 2000124.
  6. G. Li, L. Sheng, T. Li, J. Hu, P. Li, and K. Wang, Sol. Energy, 2019, 177, 80-98. https://doi.org/10.1016/j.solener.2018.11.017
  7. H. C. Weerasinghe, F. Huang, and Y.-B. Cheng, Nano Energy, 2013, 2(2), 174-189.
  8. K. Kim, G. W. Lee, K. Yoo, D. Y. Kim, J. K. Kim, and N. G. Park, J. Photochem. Photobiol. A: Chem., 2009, 204(2-3), 144-147. https://doi.org/10.1016/j.jphotochem.2009.03.008
  9. S. Sarker, N. C. D. Nath, M. M. Rahman, S.-S. Lim, A. J. S. Ahammad, W.-Y. Choi, and J.-J. Lee, J. Nanosci. Nanotechnol., 2012, 12(7), 5361-5366. https://doi.org/10.1166/jnn.2012.6398
  10. M. M. Rahman, H.-Y. Kim, Y.-D. Jeon, I.-S. Jung, K.-M. Noh, and J.-J. Lee, Bull. Korean Chem. Soc., 2013, 34(9), 2765-2768. https://doi.org/10.5012/bkcs.2013.34.9.2765
  11. M. M. Rahman, H.-S. Son, S.-S. Lim, K.-H. Chung, and J.-J. Lee, J. Electrochem. Sci. Technol., 2011, 2(2), 110-115. https://doi.org/10.5229/JECST.2011.2.2.110
  12. H.-P. Jen, M.-H. Lin, L.-L. Li, H.-P. Wu, W.-K. Huang, P.-J. Cheng, and E. W.-G. Diau, ACS Appl. Mater. Interfaces, 2013, 5(20), 10098-10104. https://doi.org/10.1021/am402687j
  13. T. Yamaguchi, N. Tobe, D. Matsumoto, T. Nagai, and H. Arakawa, Sol. Energy Mater. Sol. Cells, 2010, 94(5), 812-816. https://doi.org/10.1016/j.solmat.2009.12.029
  14. G. Boschloo, H. Lindstrom, E. Magnusson, A. Holmberg, and A. Hagfeldt, J. Photochem. Photobiol. A, 2002, 148(1-3), 11-15. https://doi.org/10.1016/S1010-6030(02)00072-2
  15. J. H. Yum, S. S. Kim, D. Y. Kim, and Y. E. Sung, J. Photochem. Photobiol. A, 2005, 173(1), 1-6. https://doi.org/10.1016/j.jphotochem.2004.12.023
  16. L. Grinis, S. Kotlyar, S. Ruhle, J. Grinblat, and A. Zaban, Adv. Funct. Mater., 2010, 20(2), 282-288. https://doi.org/10.1002/adfm.200901717
  17. H. W. Chen, C. P. Liang, H. S. Huang, J. G. Chen, R. Vittal, C. Y. Lin, C. W. W. Kevin, and K. C. Ho, Chem. Commun., 2011, 47, 8346-8348. https://doi.org/10.1039/c1cc12514a
  18. S. Uchida, M. Tomiha, H. Takizawa, and M. Kawaraya, J. Photochem. Photobiol. A, 2004, 164(1-3), 93-96. https://doi.org/10.1016/j.jphotochem.2004.01.026
  19. S. I. Cha, B. K. Koo, K. H. Hwang, S. H. Seo, and D. Y. Lee, J. Mater. Chem., 2011, 21, 6300-6304. https://doi.org/10.1039/c0jm04450d
  20. X. Li, H. Lin, J. Li, N. Wang, C. Lin, and L. Zhang, J. Photochem. Photobiol. A, 2008, 195(2-3), 247-253. https://doi.org/10.1016/j.jphotochem.2007.10.010
  21. N.-G. Park, K. M. Kim, M. G. Kang, K. S. Ryu, S. H. Chang, and Y.-J. Shin, Adv. Mater., 2005, 17(19), 2349-2353. https://doi.org/10.1002/adma.200500288
  22. M. Durr, A. Schmid, M. Obermaier, S. Rosselli, A. Yasuda, and G. Nelles, Nat. Mater., 2005, 4, 607-611. https://doi.org/10.1038/nmat1433
  23. Y. Li, W. Lee, D.-K. Lee, K. Kim, N.-G. Park, and M. J. Ko, Appl. Phys. Lett., 2011, 98, 103301.
  24. J. H. Yune, I. Karatchevtseva, G. Triani, K. Wagner, and D. Officer, J. Mater. Res., 2013, 28(3), 488-496. https://doi.org/10.1557/jmr.2012.354
  25. H. C. Weerasinghe, P. M. Sirimanne, G. V. Franks, G. P. Simon, and Y. B. Cheng, J. Photochem. Photobiol. A: Chem., 2010, 213(1), 30-36. https://doi.org/10.1016/j.jphotochem.2010.04.016
  26. P. J. Holliman, A. Connell, M. Davis, M. Carnie, D. Bryant, and E. W. Jones, Mater. Lett., 2019, 236, 289-291. https://doi.org/10.1016/j.matlet.2018.10.118
  27. F.-M. Raoult, C. R. Hebd. Seances Acad. Sci., 1887, 104, 1430-1433.
  28. M. M. Rahman, M. J. Ko, and J.-J. Lee, Nanoscale, 2015, 7, 3526-3531. https://doi.org/10.1039/c4nr06645f
  29. M. M. Rahman, S. Y. Im, and J.-J. Lee, Nanoscale, 2016, 8, 5884-5891. https://doi.org/10.1039/C5NR08155F
  30. A. N. Fletcher, J. Phys. Chem., 1969, 73(7), 2217-2225. https://doi.org/10.1021/j100727a019
  31. L. N. Lewis, J. L. Spivack, S. Gasaway, E. D. Williams, J. Y. Gui, V. Manivannan, and O. P. Siclovan, Sol. Energy Mater. Sol. Cells, 2006, 90(7-8), 1041-1051. https://doi.org/10.1016/j.solmat.2005.05.019
  32. Y.-S. Lin, M.-T. Chen, Y.-F. Lin, S.-J. Yang, and J.-L. Lin, Appl. Surf. Sci., 2006, 252(16), 5892-5899. https://doi.org/10.1016/j.apsusc.2005.08.021
  33. K.-H. Chung, M. M. Rahman, H.-S. Son, and J.-J. Lee, Int. J. Photoenergy, 2012, 2012, 215802.
  34. J.-J. Lee, M. M. Rahman, S. Sarker, N. C. Deb Nath, A.J. S. Ahammad, and J. K. Lee, B. Attaf(Ed.), in Composite materials for medicine and nanotechnology, Intech, Croatia, 2011, 181.
  35. M. M. Rahman, N. C. D. Nath, and J.-J. Lee, Isrl. J. Chem., 2015, 55(9), 990-1001.
  36. M. M. Rahman, Materials, 2021, 14(21), 6563.