DOI QR코드

DOI QR Code

Investigation of Mechanical Stability of Nanosheet FETs During Electro-Thermal Annealing

Nanosheet FETs에서의 효과적인 전열어닐링 수행을 위한 기계적 안정성에 대한 연구

  • Wang, Dong-Hyun (School of Electronics Engineering, Chungbuk National University) ;
  • Park, Jun-Young (School of Electronics Engineering, Chungbuk National University)
  • Received : 2021.09.09
  • Accepted : 2021.09.28
  • Published : 2022.01.01

Abstract

Reliability of CMOS has been severed under aggressive device scaling. Conventional technologies such as lightly doped drain (LDD) and forming gas annealing (FGA) have been applied for better device reliability, but further advances are modest. Alternatively, electro-thermal annealing (ETA) which utilizes Joule heat produced by electrodes in a MOSFET, has been newly introduced for gate dielectric curing. However, concerns about mechanical stability during the electro-thermal annealing, have not been discussed, yet. In this context, this paper demonstrates the mechanical stability of nanosheet FET during the electro-thermal annealing. The effect of mechanical stresses during the electro-thermal annealing was investigated with respect to device design parameters.

Keywords

Acknowledgement

This work was partially supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MIST) (No.2021R1F1A1049456). The EDA tool was supported by the IC Design Education Center (IDEC) in part. This research work was also partially supported by the Brain Korea (BK) 21 Funded by the Korea Government.

References

  1. C. Hu, Proc. IEEE, 81, 682 (1993). [DOI: https://doi.org/10.1109/5.220900]
  2. Q. Xie, J. Xu, and Y. Taur, IEEE Trans. Electron Devices, 59, 1569 (2012). [DOI: https://doi.org/10.1109/TED.2012.2191556]
  3. A. B. Sachid, M. C. Chen, and C. Hu, IEEE Trans. Electron Devices, 64, 1861 (2017). [DOI: https://doi.org/10.1109/TED.2017.2664798]
  4. N. Singh, A. Agarwal, L. K. Bera, T. Y. Liow, R. Yang, S. C. Rustagi, C. H. Tung, R. Kumar, G. Q. Lo, N. Balasubramanian, and D. L. Kwong, IEEE Electron Device Lett., 27, 383 (2006). [DOI: https://doi.org/10.1109/LED.2006.873381]
  5. M. Jurczak, N. Collaert, A. Veloso, T. Hoffmann, and S. Biesemans, Proc. 2009 IEEE International SOI Conference (IEEE, Foster City, USA, 2009) pp. 1-4. [DOI: https://doi.org/10.1109/SOI.2009.5318794]
  6. S. Ogura, P. J. Tsang, W. W. Walker, D. L. Critchlow, and J. F. Shepard, IEEE J. Solid-State Circuits, 15, 424 (1980). [DOI: https://doi.org/10.1109/JSSC.1980.1051416]
  7. K. Onishi, C. S. Kang, R. Choi, H. J. Cho, S. Gopalan, R. E. Nieh, S. A. Krishnan, and J. C. Lee, IEEE Trans. Electron Devices, 50, 384 (2003). [DOI: https://doi.org/10.1109/TED.2002.807447]
  8. J. Y. Park, D. I. Moon, G. B. Lee, and Y. K. Choi, IEEE Trans. Electron Devices, 67, 777 (2020). [DOI: https://doi.org/10.1109/TED.2020.2964846]
  9. N. Loubet, T. Hook, P. Montanini, C. W. Yeung, S. Kanakasabapathy, M. Guillom, T. Yamashita, J. Zhang, X. Miao, J. Wang, A. Young, R. Chao, M. Kang, Z. Liu, S. Fan, B. Hamieh, S. Sieg, Y. Mignot, W. Xu, S. C. Seo, J. Yoo, S. Mochizuki, M. Sankarapandian, O. Kwon, A. Carr, A. Greene, Y. Park, J. Frougier, R. Galatage, R. Bao, J. Shearer, R. Conti, H. Song, D. Lee, D. Kong, Y. Xu, A. Arceo, Z. Bi, P. Xu, R. Muthinti, J. Li, R. Wong, D. Brown, P. Oldiges, R. Robison, J. Arnold, N. Felix, S. Skordas, J. Gaudiello, T. Standaert, H. Jagannathan, D. Corliss, M. H. Na, A. Knorr, T. Wu, D. Gupta, S. Lian, R. Divakaruni, T. Gow, C. Labelle, S. Lee, V. Paruchuri, H. Bu, and M. Khare, Proc. 2017 Symposium on VLSI Technology (IEEE, Kyoto, Japan, 2017) p. 2158. [DOI: https://doi.org/10.23919/VLSIT.2017.7998183]
  10. K. S. L ee a nd J. Y. P ark, Electronics, 10, 1395 (2021). [DOI: https://doi.org/10.3390/electronics10121395]
  11. S. Y. Lee, S. M. Kim, E. J. Yoon, C. W. Oh, I. Chung, D. Park, and K. Kim, IEEE Trans. Nanotechnol., 2, 253 (2003). [DOI: https://doi.org/10.1109/TNANO.2003.820777]
  12. Y. Choi, K. Lee, K. Y. Kim, S. Kim, J. Lee, R. Lee, H. M. Kim, Y. S. Song, S. Kim, J. H. Lee, and B. G. Park, Solid State Electron., 164, 107686 (2019). [DOI: https://doi.org/10.1016/j.sse.2019.107686]
  13. S. Chatterjee, B. N. Chowdhury, A. Das, and S. Chattopadhyay, Semicond. Sci. Technol., 28, 125011 (2013). [DOI: https://doi.org/10.1088/0268-1242/28/12/125011]
  14. S. Abe, Y. Miyazawa, Y. Nakajima, T. Hanajiri, T. Toyabe, and T. Sugano, Proc. 2009 10th International Conference on Ultimate Integration of Silicon (IEEE, Aachen, Germany, 2009) pp. 329-332. [DOI: https://doi.org/10.1109/ULIS.2009.4897602]
  15. L. Cai, W. Chen, G. Du, X. Zhang, and X. Liu, IEEE Trans. Electron Devices, 65, 2647 (2018). [DOI: https://doi.org/10.1109/TED.2018.2825498]
  16. V. Senez, T. Hoffmann, A. Armigliato, and I. D. Wolf, Smart Mater. Struct., 15, S47 (2006). [DOI: https://doi.org/10.1088/0964-1726/15/1/009]
  17. H. Issele, D. Mercier, G. Parry, R. Estevez, L. Vignoud, and C. Olagnon, e-J. Surf. Sci. Nanotechnol., 10, 624 (2012). [DOI: https://doi.org/10.1380/ejssnt.2012.624]
  18. D. V. Shtansky, V. Kiryukhantsev-Korneev, A. N. Sheveyko, B. N. Mavrin, C. Rojas, A. Fernandez, and E. A. Levashov, Surf. Coat. Technol., 203, 3595 (2009). [DOI: https://doi.org/10.1016/j.surfcoat.2009.05.036]
  19. H. A. Chaliyawala, G. Gupta, P. Kumar, G. Srinivas, Siju, and H. C. Barshilia, Surf. Coat. Technol., 276, 431 (2015). [DOI: https://doi.org/10.1016/j.surfcoat.2015.06.032]
  20. K. Tapily, J. E. Jakes, D. S. Stone, P. Shrestha, D. Gu, H. Baumgart, and A. A. Elmustafa, J. Electrochem. Soc., 155, H545 (2008). [DOI : https://doi.org/10.1149/1.2919106]