DOI QR코드

DOI QR Code

Thermal Performance Test of the On-Board Blackbody System in the orbital environment for Non-Uniformity Correction of an Infrared Sensor

적외선 센서 교정용 위성 탑재 흑체 시스템의 궤도 환경 열성능 평가 시험

  • 최필경 (한화시스템) ;
  • 김혜인 (조선대학교 항공우주공학과 우주기술융합연구실) ;
  • 오현웅 (조선대학교 항공우주공학과 우주기술융합연구실) ;
  • 유병철 (한화시스템) ;
  • 이경묵 (한화시스템) ;
  • 홍진석 (한화시스템)
  • Received : 2022.09.30
  • Accepted : 2022.11.29
  • Published : 2022.12.31

Abstract

The output of an infrared (IR) sensor mounted on an EO/IR payload is known to change during a mission period in an orbital environment. As it is required to calibrate the output of the IR sensor periodically to obtain high-quality images, an on-board black body system is mounted on the payload. All systems operating in the space environment require performance tests on ground to verify the target performance in the orbital environment. Therefore, it is also required to test the black body system to verify the performance of the surface temperature uniformity and the estimated representative temperature error within the target temperature range in the operating environment. In this study, calibration of the estimated representative temperature error and verification of the thermal performance of the black body system were conducted by performed a performance test in the thermal vacuum chamber applying deep space radiation cooling effect of an orbital environment.

EO/IR 위성에 탑재된 적외선 센서(IR Sensor)는 궤도환경에서 임무기간 동안 복사 에너지에 대한 센서 출력의 변화가 발생한다. 고품질 영상을 획득하기 위해 출력을 교정할 수 있는 주기적인 교정이 필요하며, 센서의 주기적이고 정밀한 교정을 위해 탑재체 내부에 흑체 시스템이 적용하였다. 우주 환경에서 사용되는 모든 시스템은 궤도환경에서의 목표 성능을 검증하기 위해 지상에서의 성능시험이 요구되고 있다. 흑체 시스템은 운용환경에서 목표 온도 범위에서 대표추정온도 오차와 흑체 표면온도균일도 성능의 시험적 검증이 요구되고 있다. 본 연구에서는, 궤도환경으로 우주배경복사 냉각이 모사된 열진공 시험을 통해 제안된 흑체 시스템의 대표추정온도 오차 교정 및 성능 검증을 진행하였다.

Keywords

References

  1. Sheng, Y., Dun, X., Jin, W., Zhou, F., Wang, X, Mi, F., & Xiao, S., "The on-orbit non-uniformity correction method with modulated internal calibration sources for infrared remote sensing systems," Remote Sensing, Vol. 10, No. 6, pp. 830, 2018.
  2. Miao, L. I., Xu, Q., Zhang, M. T., Sun, D. X., & Liu, Y. N., "Real-time implementation of multi-point nonuniformity correction for IRFPA based on FPGA," International Symposium on Photoelectronic Detection and Imaging 2009: Advances in Infrared Imaging and Applications, Vol. 7383, pp. 73830F, 2009.
  3. Calik, R. C., Tunali, E., Ercan, B., & Oz, S., "A Study on Calibration Methods for Infrared Focal Plane Array Cameras," VISIGRAPP (4: VISAPP), pp. 219-226, 2018.
  4. Lee, K. M., & Oh, H. U., "Calibration Mirror Mechanism with Fail-safe Function," Journal of the Korean Society for Aeronautical & Space Sciences, Vol. 39, No. 7, pp. 682-687, 2011.
  5. Olschewski, F., Ebersoldt, A., Friedl-Vallon, F., Gutschwager, B., Hollandt, J., Kleinert, A., ... & Koppmann, R., "The in-flight blackbody calibration system for the GLORIA interferometer on board an airborne research platform," Atmospheric Measurement Techniques, Vol. 6, No. 11, pp. 3067-3082, 2013.
  6. Monte, C., Gutschwager, B., Adibekyan, A., Kehrt, M., Ebersoldt, A., Olschewski, F., & Hollandt, J., "Radiometric calibration of the in-flight blackbody calibration system of the GLORIA interferometer," Atmospheric Measurement Techniques, Vol. 7, No. 1, pp. 13-27, 2014. https://doi.org/10.5194/amt-7-13-2014
  7. Koppmann, R., Olschewski, F., Steffens, P., Rolf, C., Preusse, P., Ebersoldt, A., ... & Monte, C., "An in-flight blackbody calibration source for the GLORIA interferometer onboard an airborne research platform," AIP Conference Proceedings, Vol. 1531, No. 1. American Institute of Physics, pp. 332-335, May 2013.
  8. Shin, S., "Black body design and verification for non-uniformity correction of imaging sensor and uncertainty analysis," Journal of the Korean Society for Aeronautical & Space Sciences, Vol. 41, No. 3, pp. 240-245, 2013.
  9. Oh, H. U., Shin, S. M., Hong, J. S., & Lee, M. K., "On-Board Black Body Thermal Design and On-Orbit Thermal Analysis for Non-Uniformity Correction of Space Imagers," Journal of the Korean Society for Aeronautical & Space Sciences, Vol. 38, No. 10, pp. 1020-1025, 2010.
  10. Oh, H. U., & Shin, S., "Numerical study on the thermal design of on-board blackbody," Aerospace Science and Technology, Vol. 18, No. 1, pp. 25-34, 2012. https://doi.org/10.1016/j.ast.2011.03.011
  11. Kim, H. I., Choi, P. G., Jo, M. S., & Oh, H. U., "Numerical Investigation of Blackbody Design for Spaceborne Image Sensor Non-uniformity Characteristic Calibration," Journal of Aerospace System Engineering, Vol. 14, No. 3, pp. 42-50, 2020.
  12. Hong, J., Choi, P. G., Jo, M., Lee, K., Yoon, J., & Lee, E. S., "Design evaluation of the tilt mirror and groove feature for flat thermal image of the blackbody unit," Infrared, Millimeter-Wave, and Terahertz Technologies VI, Vol. 11196, pp. 10, November 2019.
  13. Thermal Desktop User's Guide, Ver. 5.8, Network Analysis Associates, Tempe, Az, 2006.
  14. SINDA/FLUINT User's Guide, Ver. 5.8, Network Analysis Associates, Tempe, Az, 2006.