DOI QR코드

DOI QR Code

Effects of Al Content on Microstructure and Hardness of Discontinuous Precipitates Formed by Continuous Cooling After Solution Treatment in Mg-Al Alloys

Mg-Al 합금에서 용체화처리 후 연속 냉각으로 생성된 불연속 석출물 의 미세조직과 경도에 미치는 Al 함량의 영향

  • Joong-Hwan, Jun (Industrial Materials Processing R&D Department, Korea Institute of Industrial Technology)
  • 전중환 (한국생산기술연구원 산업소재공정연구부문)
  • Received : 2022.08.25
  • Accepted : 2022.09.30
  • Published : 2022.11.30

Abstract

The present study aims to investigate the effect of Al content on microstructure and hardness of discontinuous precipitates (DPs) formed by continuous cooling (CC) in Mg-8%Al and Mg-9.5%Al alloys. The DPs had a wide range of (α+β) interlamellar spacings, which may well be attributed to the different transformation temperatures during CC. The higher Al content gave rise to the higher level of interlamellar spacings of the DPs, and thicker and larger amount of β phase layer in the DPs. It is noticeable that the Mg-9.5%Al alloy exhibited higher hardness of the DPs than the Mg-8%Al alloy, but the ratio of increase in hardness of the DPs compared to that of the as-cast state was similar regardless of the Al content. The reason was discussed based on the differences in microstructures of the DPs for the Mg-8%Al and Mg-9.5%Al alloys.

Keywords

Acknowledgement

이 성과는 정부(과학기술정보통신부)의 재원으로 한국연구재단의 지원을 받아 수행된 연구임(No. 2021R1F1A1049912).

References

  1. A. Srinivas, D. Pavan, B. K. Venkatesha, R. R. Rao, and L. Mohith : Mater. Today: Proc. 54 (2022) 291. https://doi.org/10.1016/j.matpr.2021.09.171
  2. C. H. Caceres, C. J. Davidson, J. R. Griffiths, and C. L. Newton : Mater. Sci. Eng. A 325 (2002) 344. https://doi.org/10.1016/S0921-5093(01)01467-8
  3. M. Tan, Z. Liu, and G. Quan : Energy Proc. 16 (2012) 457. https://doi.org/10.1016/j.egypro.2012.01.074
  4. C. R. Hutchinson, J. F. Nie, and S. Gorsse : Metall. Mater. Trans. A 36A (2005) 2093. https://doi.org/10.1007/s11661-005-0330-x
  5. K. N. Braszczynska-Malik : J. Alloy. Compd. 477 (2009) 870. https://doi.org/10.1016/j.jallcom.2008.11.008
  6. M. X. Zhang and P. M. Kelly : Scripta Mater. 48 (2003) 647.
  7. J. D. Robson : Acta Mater. 61 (2013) 7781. https://doi.org/10.1016/j.actamat.2013.09.017
  8. K. Fujii, K. Matsuda, T. Gonoji, K. Watanabe, T. Kawabata, Y. Uetani, and S. Ikeno : Mater. Trans. 52 (2011) 340. https://doi.org/10.2320/matertrans.MB201021
  9. S. Takeshita, C. Watanabe, R. Monzen, and S. Saikawa : J. Jpn. Inst. Light Met. 64 (2014) 470.
  10. S. Celotto : Acta Mater. 48 (2000) 1775. https://doi.org/10.1016/S1359-6454(00)00004-5
  11. J. G. Han and J. H. Jun : J. Kor. Soc. Heat Treat. 32 (2019) 249.
  12. J. H. Jun : J. Alloy. Compd. 73 (2017) 237. https://doi.org/10.1016/j.jallcom.2017.07.147
  13. J. H. Jun : J. Kor. Soc. Heat Treat. 33 (2020) 271. https://doi.org/10.12656/JKSHT.2020.33.6.271
  14. S. Lee, S. Jeong, and B. Hwang : Kor. J. Mater. Res. 25 (2015) 583. https://doi.org/10.3740/MRSK.2015.25.11.583
  15. S. Lee, J. Kang, S. Lee, and B. Hwang : J. Kor. Soc. Heat Treat. 29 (2016) 8. https://doi.org/10.12656/jksht.2016.29.1.8
  16. J. H. Jun : J. Kor. Soc. Heat Treat. 34 (2021) 287. https://doi.org/10.12656/JKSHT.2021.34.6.287
  17. M. S. Dargusch, K. Pettersen, K. Nogita, M. D. Nave, and G. L. Dunlop : Mater. Trans. 47 (2006) 977. https://doi.org/10.2320/matertrans.47.977
  18. W. Zheng, S. Li, B. Tand, and D. Zeng : China Found. 3 (2006) 270.
  19. M. D. Nave, A. K. Dahle, and D. H. StJohn : Magnesium Technology, TMS, 2000, pp. 233.
  20. J. H. Jun : J. Kor. Soc. Heat Treat. 33 (2020) 173. https://doi.org/10.12656/JKSHT.2020.33.4.173
  21. C. Zener : Trans. AIME 167 (1946) 550.
  22. N. Ridley : Metall. Trans. A 15A (1984) 1019. https://doi.org/10.1007/BF02644694