DOI QR코드

DOI QR Code

고체 전해질 층의 어닐링 온도가 고분자 멤리스터의 전기적 특성에 미치는 영향

Effect of annealing temperature of solid electrolyte layer on the electrical characteristics of polymer memristor

  • Woo-Seok, Kim (Dept. of Creative Convergence Engineering, Hanbat National University) ;
  • Eun-Kyung, Noh (Dept. of Creative Convergence Engineering, Hanbat National University) ;
  • Jin-Hyuk, Kwon (Research Institute of Printed Electronics & 3D Printing, Industry University Cooperation Foundation, Hanbat National University) ;
  • Min-Hoi, Kim (Dept. of Creative Convergence Engineering, Hanbat National University)
  • 투고 : 2022.12.14
  • 심사 : 2022.12.22
  • 발행 : 2022.12.31

초록

Poly(vinylidene fluoride-trifluoroethylene)(P(VDF-TrFE)) 고체 전해질 층의 어닐링 온도가 고분자 멤리스터의 전기적 특성에 미치는 영향을 분석하였다. 형태적 분석에서 100℃ 어닐링 온도를 갖는 P(VDF-TrFE) (100P(VDF-TrFE)) 박막 대비 200℃ 어닐링 온도를 갖는 P(VDF-TrFE) (200P(VDF-TrFE)) 박막의 표면 거칠기가 약 5배 크고 두께는 약 20% 작은 것으로 나타났다. 100P(VDF-TrFE)를 갖는 멤리스터 (M100) 대비 200P(VDF-TrFE) 멤리스터 (M200)의 set voltage는 약 50% 감소하였고, reset voltage의 크기는 약 30% 증가하였다. 또한, M200이 M100보다 더 나은 메모리 유지 특성을 갖는 것으로 나타났다. 이러한 차이는 M100 대비 M200 내부의 강한 국소 전기장 때문인 것으로 판단된다. 본 연구는 고분자 멤리스터의 어닐링 온도의 중요성을 제시함에 의의가 있다.

The effect of the annealing temperature of the poly(vinylidene fluoride-trifluoroethylene)(P(VDF-TrFE)) solid electrolyte layer on the electrical properties of the P(VDF-TrFE)-based memristor was analyzed. In morphological analyses, the P(VDF-TrFE) thin film with 200℃ annealing temperature (200P(VDF-TrFE)) was shown to have surface roughness ≈5 times larger and thickness ≈20% smaller than that with 100℃ annealing temperature (100P(VDF-TrFE)). Compared to the 100P(VDF-TrFE) memristor (M100), the set voltage of the 200P(VDF-TrFE) memristor (M200) decreased by ≈50% and the magnitude of its reset voltage increased by ≈30%. Moreover, M200 was found to have better memory retention characteristics than M100. These differences were attributed to relatively strong local electric fields inside M200 compared to M100. This study suggests the importance of the annealing temperature in polymer memristors.

키워드

참고문헌

  1. B. Cho et al., "Organic resistive memory devices: performance enhancement, integration, and advanced architectures," Adv. Funct. Mater., vol.21, no.15, pp.2806-2829, 2011. DOI: 10.1002/adfm.201100686
  2. P. Sun et al., "Thermal crosstalk in 3-dimensional RRAM crossbar array," Sci. Rep., vol.5, no.1, pp.1-9, 2015.
  3. S. H. Jo et al., "Nanoscale memristor device as synapse in neuromorphic systems," Nano Lett., vol.10, no.4, pp.1297-1301, 2010. DOI: 10.1021/nl904092h
  4. V. D. B. Yoeri et al., "Organic electronics for neuromorphic computing," Nature Electronics, vol.1, no.7, pp.386-397, 2018. https://doi.org/10.1038/s41928-018-0103-3
  5. H.-L. Park et al., "Introduction of interfacial load polymeric layer to organic flexible memristor for regulating conductive filament growth," Adv. Electron. Mater., vol.6, no.10, pp.2000582, 2020. DOI: 10.1002/aelm.202000582
  6. H.-L. Park et al., "Control of conductive filament growth in flexible organic memristor by polymer alignment," Org. Electron., vol.87, pp.105927, 2020. DOI: 10.1016/j.orgel.2020.105927
  7. H.-L. Park et al., "Reliable organic memristors for neuromorphic computing by predefining a localized ion-migration path in crosslinkable polymer," Nanoscale, vol.12, no.44, pp.22502-22510, https://doi.org/10.1039/d0nr06964g
  8. M. Zaheer et al., "Liquid-Metal-Induced Memristor Behavior in Polymer Insulators", pss (RRL), vol.14, no.5, pp.200050,
  9. R. I. Mahdi et al., "Hot plate annealing at a low temperature of a thin ferroelectric P (VDF-TrFE) film with an improved crystalline structure for sensors and actuators", Sens., vol.14, no.10, pp.19115-19127, 2014. https://doi.org/10.3390/s141019115
  10. K. Min. Yu et al., "Controllable liquid water sensitivity of polymer-encapsulated oxide thin-film transistors," Semicond. Sci. Technol., vol.35, no.11, pp.115006, 2020. DOI: 10.1088/1361-6641/abad75/meta
  11. Y. Sun et al., "Guiding the growth of a conductive filament by nanoindentation to improve resistive switching," ACS Appl. Mater. Interfaces, vol.9, no.39, pp.34064-34070, 2017. DOI: 10.1021/acsami.7b09710
  12. S.-H. Lee et al., "Interfacial Triggering of Conductive Filament Growth in Organic Flexible Memristor for High Reliability and Uniformity," ACS Appl. Mater. Interfaces, vol.11, no.33, pp.30108-30115, 2019. DOI: 10.1021/acsami.9b10491