DOI QR코드

DOI QR Code

ON WEAKLY S-PRIME SUBMODULES

  • Hani A., Khashan (Department of Mathematics Faculty of Science Al al-Bayt University) ;
  • Ece Yetkin, Celikel (Department of Basic Sciences Faculty of Engineering Hasan Kalyoncu University)
  • Received : 2021.10.27
  • Accepted : 2022.03.04
  • Published : 2022.11.30

Abstract

Let R be a commutative ring with a non-zero identity, S be a multiplicatively closed subset of R and M be a unital R-module. In this paper, we define a submodule N of M with (N :R M)∩S = ∅ to be weakly S-prime if there exists s ∈ S such that whenever a ∈ R and m ∈ M with 0 ≠ am ∈ N, then either sa ∈ (N :R M) or sm ∈ N. Many properties, examples and characterizations of weakly S-prime submodules are introduced, especially in multiplication modules. Moreover, we investigate the behavior of this structure under module homomorphisms, localizations, quotient modules, cartesian product and idealizations. Finally, we define two kinds of submodules of the amalgamation module along an ideal and investigate conditions under which they are weakly S-prime.

Keywords

References

  1. M. M. Ali, Residual submodules of multiplication modules, Beitrage Algebra Geom. 46 (2005), no. 2, 405-422.
  2. M. M. Ali, Multiplication modules and homogeneous idealization. II, Beitrage Algebra Geom. 48 (2007), no. 2, 321-343.
  3. F. A. A. Almahdi, E. M. Bouba, and M. Tamekkante, On weakly S-prime ideals of commutative rings, An. Stiint. Univ. "Ovidius" Constanta Ser. Mat. 29 (2021), no. 2, 173-186. https://doi.org/10.2478/auom-2021-0024
  4. R. Ameri, On the prime submodules of multiplication modules, Int. J. Math. Math. Sci. 2003 (2003), no. 27, 1715-1724. https://doi.org/10.1155/S0161171203202180
  5. D. D. Anderson and E. Smith, Weakly prime ideals, Houston J. Math. 29 (2003), no. 4, 831-840.
  6. D. D. Anderson and M. Winders, Idealization of a module, J. Commut. Algebra 1 (2009), no. 1, 3-56. https://doi.org/10.1216/JCA-2009-1-1-3
  7. S. E. Atani and F. Farzalipour, On weakly prime submodules, Tamkang J. Math. 38 (2007), no. 3, 247-252. https://doi.org/10.5556/j.tkjm.38.2007.77
  8. M. F. Atiyah and I. G. Macdonald, Introduction to Commutative Algebra, AddisonWesley Publishing Co., Reading, MA, 1969.
  9. E. M. Bouba, N. Mahdou, and M. Tamekkante, Duplication of a module along an ideal, Acta Math. Hungar. 154 (2018), no. 1, 29-42. https://doi.org/10.1007/s10474-017-0775-6
  10. M. D'Anna and M. Fontana, An amalgamated duplication of a ring along an ideal: the basic properties, J. Algebra Appl. 6 (2007), no. 3, 443-459. https://doi.org/10.1142/S0219498807002326
  11. Z. A. El-Bast and P. F. Smith, Multiplication modules, Comm. Algebra 16 (1988), no. 4, 755-779. https://doi.org/10.1080/00927878808823601
  12. R. Gilmer, Multiplicative ideal theory, Pure and Applied Mathematics, No. 12, Marcel Dekker, Inc., New York, 1972.
  13. A. Hamed and A. Malek, S-prime ideals of a commutative ring, Beitr. Algebra Geom. 61 (2020), no. 3, 533-542. https://doi.org/10.1007/s13366-019-00476-5
  14. R. E. Khalfaoui, N. Mahdou, P. Sahandi, and N. Shirmohammadi, Amalgamated modules along an ideal, Commun. Korean Math. Soc. 36 (2021), no. 1, 1-10. https://doi.org/10.4134/CKMS.c200064
  15. Max. D. Larsen and P. J. McCarthy, Multiplicative theory of ideals, Pure and Applied Mathematics, Vol. 43, Academic Press, New York, 1971.
  16. H. Mostafanasab, E. Yetkin, U. Tekir, and A. Y. Darani, On 2-absorbing primary submodules of modules over commutative rings, An. Stiint. Univ. "Ovidius" Constanta Ser. Mat. 24 (2016), no. 1, 335-351. https://doi.org/10.1515/auom-2016-0020
  17. M. Nagata, Local rings, Interscience Tracts in Pure and Applied Mathematics, No. 13, Interscience Publishers (a division of John Wiley & Sons, Inc.), New York, 1962.
  18. E. Sengelen Sevim, T. Arabaci, U. Tekir, and S. Koc, On S-prime submodules, Turkish J. Math. 43 (2019), no. 2, 1036-1046. https://doi.org/10.3906/mat-1808-50
  19. E. Yetkin Celikel and H. A. Khashan, Weakly S-primary ideals of commutative rings, submitted.