DOI QR코드

DOI QR Code

Quality Estimation of Net Packaged Onions during Storage Periods using Machine Learning Techniques

  • Nandita Irsaulul, Nurhisna (Department of Biosystems Engineering, Seoul National University) ;
  • Sang-Yeon, Kim (Department of Biosystems Engineering, Seoul National University) ;
  • Seongmin, Park (Department of Biosystems Engineering, Seoul National University) ;
  • Suk-Ju, Hong (Department of Biosystems Engineering, Seoul National University) ;
  • Eungchan, Kim (Department of Biosystems Engineering, Seoul National University) ;
  • Chang-Hyup, Lee (Department of Biosystems Engineering, Seoul National University) ;
  • Sungjay, Kim (Department of Biosystems Engineering, Seoul National University) ;
  • Jiwon, Ryu (Department of Biosystems Engineering, Seoul National University) ;
  • Seungwoo, Roh (Department of Biosystems Engineering, Seoul National University) ;
  • Daeyoung, Kim (Department of Biosystems Engineering, Seoul National University) ;
  • Ghiseok, Kim (Department of Biosystems Engineering, Seoul National University)
  • 투고 : 2022.11.21
  • 심사 : 2022.12.14
  • 발행 : 2022.12.31

초록

Onions are a significant crop in Korea, and cultivation is increasing every year along with high demand. Onions are planted in the fall and mainly harvested in June, the rainy season, therefore, physiological changes in onion bulbs during long-term storage might have happened. Onions are stored in cold room and at adequate relative humidity to avoid quality loss. In this study, bio-yield stress and weight loss were measured as the quality parameters of net packaged onions during 10 weeks of storage, and the storage environmental conditions are monitored using sensor networks systems. Quality estimation of net packaged onion during storage was performed using the storage environmental condition data through machine learning approaches. Among the suggested estimation models, support vector regression method showed the best accuracy for the quality estimation of net packaged onions.

키워드

과제정보

This study was supported by the Rural Development Administration (RDA) through the Cooperative Research Program for Agriculture Science & Technology Development Program (Project No. PJ015618032021).

참고문헌

  1. Sasongko, S.B., Hadiyanto, H., Djaeni, M., Perdanianti, A.M., and Utari, F.D. 2020. Effects of drying temperature and relative humidity on the quality of dried onion slice. Heliyon. 6(7):e04338. doi:10.1016/j.heliyon.2020.e04338
  2. Baek H.-S. and Kim, I.S. 2020. An Analysis of the Impact of Climate Change on the Korean Onion Market. J Ind Bus. 11(3):39-50. doi:10.13106/jidb.2020.vol11.no3.39
  3. Cho, J. -E., Bae, R. -N. and Lee, S.K. 2010. Current Research Status of Postharvest Technology of Onion (Allium cepa L.). Hortscience Tech. 28(3):522-527.
  4. Sang, M. K., Han, G.D., Oh, J.Y., Chun, S.C. and Kim, K.D. 2014. Penicillium brasilianum as a novel pathogen of onion (Allium cepa L.) and other fungi predominant on market onion in Korea. Crop Prot. 65:138-142. doi:10.1016/j.cropro.2014.07.016
  5. Isma'ila, M., Karu, E., Zhigila, D.A. and Yuguda, U. 2017. Postharvest Storage and Shelf Life Potentials among Selected Varieties of Onion (Allium cepa L). Scholars Acad J Biosci. 5(4):271-277. doi:10.21276/sajb
  6. Jang, S.-H. and Lee, S.-K. 2009. Current Research Status of Postharvest Technology of Onion. Korean J Hortscience Tech. 27(3):511-520.
  7. Porras-Amores, C., Mazarron, F.R. and Canas, I. 2014. Study of the vertical distribution of air temperature in warehouses. Energies. 7(3):1193-1206. doi:10.3390/en7031193
  8. Abbott, J.A. 1999. Quality measurement of fruits and vegetables. Postharvest Bio Tech. 15(3):207-225. doi:10.1016/S0925-5214(98)00086-6
  9. Soliman, S.N. and El-Sayed, A.E. 2017. Penetration and Stress-Strain Behavior of Potato Tubers During Storage. Misr J Ag Eng. 34(4):2291-2310. doi:10.21608/mjae.2017.97514
  10. Masoudi, H., Tabatabaeefar, A. and Borghaee, A. M. 2007. Determination of storage effect on mechanical properties of apples using the uniaxial compression test. Can Bio Eng. 49:3.29-33.
  11. Eboibi, O. and Uguru, H. 2017. Storage conditions effect on physic-mechanical properties of Nandini cucumber. Int J Eng Tech Res. 7(11):48-56.
  12. Mohsenin, N.N. 2020. Physical Properties of Plant and Animal Materials: V. 1: Physical Characteristics and Mechanical Properties. 2nd Ed. Routledge, New York, USA, pp. 702. doi:10.4324/9781003062325
  13. Ferreira, A.P.S, de Souza, C.S., Pereira, A.M., Cardoso, D.S.C.P., Finger, F.L. and Rego, E.R. 2015. Storage of onions in farm scale ventilated silos. Proceeding II International Symposium on Horticulture in Europe. pp. 123-128. doi:10.17660/ActaHortic.2015.1099.11
  14. Sharma, K., Ko, E.Y., Assefa, A.D., Nile, S.H and Park, S.W. 2015. A comparative study of anaerobic and aerobic decomposition of quercetin glucosides and sugars in onion at an ambient temperature. Front Life Sci. 8(2):117-123. doi:10.1080/21553769.2014.998298
  15. Emana, B., Afari-Sefa, V., Kebede, D., Nenguwo, N., Ayana, A. and Mohammed, H. 2017. Assessment of postharvest losses and marketing of onion in Ethiopia. Int J Post Tech and Inn. 5(4):300-319. doi:10.1504/IJPTI.2017.092466
  16. Falayi, F.R., Yusuf, H.A. and State, O. 2014. Performance Evaluation of a Modified Onion Storage Structure. J Emerging trends in Eng App Sci. 5(6):334-339.
  17. Badia-Melis, R., Mishra, P. and Ruiz-Garcia, L. 2015. Food traceability: New trends and recent advances. A review. Food Control. 57:393-401. doi:10.1016/j.foodcont.2015.05.005
  18. Chen, R.Y. 2017. An intelligent value stream-based approach to collaboration of food traceability cyber physical system by fog computing. Food Control. 71:124-136. doi:10.1016/j.foodcont.2016.06.042
  19. Shao, P., Liu, L. and Yu, J. 2021. An overview of intelligent freshness indicator packaging for food quality and safety monitoring. Trends Food Sci Technol. 118:285-296. doi:10.1016/j.tifs.2021.10.012
  20. Xiao, X., He, Q., Li, Z., Antoce, A.O. and Zhang, X. 2017. Improving traceability and transparency of table grapes cold chain logistics by integrating WSN and correlation analysis. Food Control. 73:1556-1563. doi:10.1016/j.foodcont.2016.11.019
  21. Karim, A.B., Hassan, A.Z., Akanda, M.M. and Mallik, A. Monitoring food storage humidity and temperature data using IoT. 2018. MOJ Food Process Technol. 6(4):400-404. doi:10.15406/mojfpt.2018.06.00194
  22. Sarmah, B. and Aruna, G. 2020. Detection of food quality and quantity at cold storage using IoT. 2020 International Conference on Wireless Communications Signal Processing and Networking (WiSPNET), pp. 200-203.
  23. Accorsi, R., Bortolini, M., Gamberi, M., Guidani, B., Manzini, R. and Ronzoni, M. 2021. Simulating product-packaging conditions under environmental stresses in a food supply chain cyber-physical twin. J Food Eng. 320:110930. doi:10.1016/j.jfoodeng.2021.110930
  24. Ramzi, M., Kashaninejad, M., Salehi, F., Sadeghi, Mahoonak, A.R. and Ali, R.S.M. 2015. Modeling of rheological behavior of honey using genetic algorithm-artificial neural network and adaptive neuro-fuzzy inference system. Food Biosci.9(1):60-67. doi:10.1016/j.fbio.2014.12.001
  25. Chen, C.R., Ramaswamy, H.S. and Alli, I. 2001. Prediction of quality changes during osmo-convective drying of blueberries using neural network models for process optimization. Drying Tech. 19(3-4):507-523. doi:10.1081/DRT-100103931
  26. Correa-mosquera, A.R., Quicaz, M.C. and Zuluaga-dominguez, C.M. 2022. Shelf-life prediction of pot-honey subjected to thermal treatments based on quality attributes at accelerated storage conditions. Food Control. 142:109237. doi:10.1016/j.foodcont.2022.109237
  27. Huang, X., Chen, M., Wang, W., Ge, Y. and Xie J. 2020. Shelf-life Prediction of Chilled Penaeus vannamei Using Grey Relational Analysis and Support Vector Regression. J Aquat Food Prod Tech. 29(6):507-519. doi:10.1080/10498850.2020.1766616
  28. Devahastin, S. and Niamnuy, C. 2010. Modelling quality changes of fruits and vegetables during drying: A review. Int J Food Sci Technol. 45(9):1755-1767. doi:10.1111/j.1365-2621.2010.02352.x
  29. Mitra, J., Shrivastava, S. L. and Rao, P. S. 2015. Non-enzymatic browning and flavour Kinetics of vacuum dried onion slices. Int Agrophys. 29(1):91-100. doi:10.1515/intag-2015-0010
  30. Escobedo-Avellaneda, Z., Velazquez, G., Torres, J. A., & Welti-Chanes, J. 2012. Inclusion of the variability of model parameters on shelf-life estimations for low and intermediate moisture vegetables. LWT Food Sci Tech. 47(2):364-370. doi:10.1016/j.lwt.2012.01.032 
  31. Kaymak-Ertekin, F. and Gedik, A. 2005. Kinetic modelling of quality deterioration in onions during drying and storage. J Food Eng. 68(4):443-453. doi:10.1016/j.jfoodeng.2004.06.022
  32. ASAE standard 368. 4. 2008. Compression test of food materials of convex shape. American Society of Agricultural and Biological Engineers. 2000 (MAR95):580-587. http://elibrary.asabe.org/abstract.asp?aid=42544&t=2
  33. Bovi, G.G., Caleb, O.J., Linke, M., Rauh, C. and Mahajan, P.V. 2016. Transpiration and moisture evolution in packaged fresh horticultural produce and the role of integrated mathematical models: A review. Biosyst Eng. 150:24-39. doi:10.1016/j.biosystemseng.07.013
  34. Sastry, S. K. 1985. Moisture losses from perishable commodities: recent research and developments. Int J Refrig. 8(6):343-346. doi:10.1016/0140-7007(85)90029-5