Browse > Article
http://dx.doi.org/10.20909/kopast.2022.28.3.237

Quality Estimation of Net Packaged Onions during Storage Periods using Machine Learning Techniques  

Nandita Irsaulul, Nurhisna (Department of Biosystems Engineering, Seoul National University)
Sang-Yeon, Kim (Department of Biosystems Engineering, Seoul National University)
Seongmin, Park (Department of Biosystems Engineering, Seoul National University)
Suk-Ju, Hong (Department of Biosystems Engineering, Seoul National University)
Eungchan, Kim (Department of Biosystems Engineering, Seoul National University)
Chang-Hyup, Lee (Department of Biosystems Engineering, Seoul National University)
Sungjay, Kim (Department of Biosystems Engineering, Seoul National University)
Jiwon, Ryu (Department of Biosystems Engineering, Seoul National University)
Seungwoo, Roh (Department of Biosystems Engineering, Seoul National University)
Daeyoung, Kim (Department of Biosystems Engineering, Seoul National University)
Ghiseok, Kim (Department of Biosystems Engineering, Seoul National University)
Publication Information
KOREAN JOURNAL OF PACKAGING SCIENCE & TECHNOLOGY / v.28, no.3, 2022 , pp. 237-244 More about this Journal
Abstract
Onions are a significant crop in Korea, and cultivation is increasing every year along with high demand. Onions are planted in the fall and mainly harvested in June, the rainy season, therefore, physiological changes in onion bulbs during long-term storage might have happened. Onions are stored in cold room and at adequate relative humidity to avoid quality loss. In this study, bio-yield stress and weight loss were measured as the quality parameters of net packaged onions during 10 weeks of storage, and the storage environmental conditions are monitored using sensor networks systems. Quality estimation of net packaged onion during storage was performed using the storage environmental condition data through machine learning approaches. Among the suggested estimation models, support vector regression method showed the best accuracy for the quality estimation of net packaged onions.
Keywords
Net packaged onion; Wireless sensor network; Machine learning technique;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Sasongko, S.B., Hadiyanto, H., Djaeni, M., Perdanianti, A.M., and Utari, F.D. 2020. Effects of drying temperature and relative humidity on the quality of dried onion slice. Heliyon. 6(7):e04338. doi:10.1016/j.heliyon.2020.e04338   DOI
2 Baek H.-S. and Kim, I.S. 2020. An Analysis of the Impact of Climate Change on the Korean Onion Market. J Ind Bus. 11(3):39-50. doi:10.13106/jidb.2020.vol11.no3.39   DOI
3 Cho, J. -E., Bae, R. -N. and Lee, S.K. 2010. Current Research Status of Postharvest Technology of Onion (Allium cepa L.). Hortscience Tech. 28(3):522-527.
4 Sang, M. K., Han, G.D., Oh, J.Y., Chun, S.C. and Kim, K.D. 2014. Penicillium brasilianum as a novel pathogen of onion (Allium cepa L.) and other fungi predominant on market onion in Korea. Crop Prot. 65:138-142. doi:10.1016/j.cropro.2014.07.016   DOI
5 Isma'ila, M., Karu, E., Zhigila, D.A. and Yuguda, U. 2017. Postharvest Storage and Shelf Life Potentials among Selected Varieties of Onion (Allium cepa L). Scholars Acad J Biosci. 5(4):271-277. doi:10.21276/sajb   DOI
6 Jang, S.-H. and Lee, S.-K. 2009. Current Research Status of Postharvest Technology of Onion. Korean J Hortscience Tech. 27(3):511-520.
7 Porras-Amores, C., Mazarron, F.R. and Canas, I. 2014. Study of the vertical distribution of air temperature in warehouses. Energies. 7(3):1193-1206. doi:10.3390/en7031193   DOI
8 Abbott, J.A. 1999. Quality measurement of fruits and vegetables. Postharvest Bio Tech. 15(3):207-225. doi:10.1016/S0925-5214(98)00086-6   DOI
9 Soliman, S.N. and El-Sayed, A.E. 2017. Penetration and Stress-Strain Behavior of Potato Tubers During Storage. Misr J Ag Eng. 34(4):2291-2310. doi:10.21608/mjae.2017.97514   DOI
10 Masoudi, H., Tabatabaeefar, A. and Borghaee, A. M. 2007. Determination of storage effect on mechanical properties of apples using the uniaxial compression test. Can Bio Eng. 49:3.29-33.
11 Eboibi, O. and Uguru, H. 2017. Storage conditions effect on physic-mechanical properties of Nandini cucumber. Int J Eng Tech Res. 7(11):48-56.
12 Mohsenin, N.N. 2020. Physical Properties of Plant and Animal Materials: V. 1: Physical Characteristics and Mechanical Properties. 2nd Ed. Routledge, New York, USA, pp. 702. doi:10.4324/9781003062325   DOI
13 Ferreira, A.P.S, de Souza, C.S., Pereira, A.M., Cardoso, D.S.C.P., Finger, F.L. and Rego, E.R. 2015. Storage of onions in farm scale ventilated silos. Proceeding II International Symposium on Horticulture in Europe. pp. 123-128. doi:10.17660/ActaHortic.2015.1099.11   DOI
14 Sharma, K., Ko, E.Y., Assefa, A.D., Nile, S.H and Park, S.W. 2015. A comparative study of anaerobic and aerobic decomposition of quercetin glucosides and sugars in onion at an ambient temperature. Front Life Sci. 8(2):117-123. doi:10.1080/21553769.2014.998298   DOI
15 Emana, B., Afari-Sefa, V., Kebede, D., Nenguwo, N., Ayana, A. and Mohammed, H. 2017. Assessment of postharvest losses and marketing of onion in Ethiopia. Int J Post Tech and Inn. 5(4):300-319. doi:10.1504/IJPTI.2017.092466   DOI
16 Shao, P., Liu, L. and Yu, J. 2021. An overview of intelligent freshness indicator packaging for food quality and safety monitoring. Trends Food Sci Technol. 118:285-296. doi:10.1016/j.tifs.2021.10.012   DOI
17 Falayi, F.R., Yusuf, H.A. and State, O. 2014. Performance Evaluation of a Modified Onion Storage Structure. J Emerging trends in Eng App Sci. 5(6):334-339.
18 Badia-Melis, R., Mishra, P. and Ruiz-Garcia, L. 2015. Food traceability: New trends and recent advances. A review. Food Control. 57:393-401. doi:10.1016/j.foodcont.2015.05.005   DOI
19 Chen, R.Y. 2017. An intelligent value stream-based approach to collaboration of food traceability cyber physical system by fog computing. Food Control. 71:124-136. doi:10.1016/j.foodcont.2016.06.042   DOI
20 Xiao, X., He, Q., Li, Z., Antoce, A.O. and Zhang, X. 2017. Improving traceability and transparency of table grapes cold chain logistics by integrating WSN and correlation analysis. Food Control. 73:1556-1563. doi:10.1016/j.foodcont.2016.11.019   DOI
21 Karim, A.B., Hassan, A.Z., Akanda, M.M. and Mallik, A. Monitoring food storage humidity and temperature data using IoT. 2018. MOJ Food Process Technol. 6(4):400-404. doi:10.15406/mojfpt.2018.06.00194   DOI
22 Sarmah, B. and Aruna, G. 2020. Detection of food quality and quantity at cold storage using IoT. 2020 International Conference on Wireless Communications Signal Processing and Networking (WiSPNET), pp. 200-203.
23 Accorsi, R., Bortolini, M., Gamberi, M., Guidani, B., Manzini, R. and Ronzoni, M. 2021. Simulating product-packaging conditions under environmental stresses in a food supply chain cyber-physical twin. J Food Eng. 320:110930. doi:10.1016/j.jfoodeng.2021.110930   DOI
24 Huang, X., Chen, M., Wang, W., Ge, Y. and Xie J. 2020. Shelf-life Prediction of Chilled Penaeus vannamei Using Grey Relational Analysis and Support Vector Regression. J Aquat Food Prod Tech. 29(6):507-519. doi:10.1080/10498850.2020.1766616   DOI
25 Ramzi, M., Kashaninejad, M., Salehi, F., Sadeghi, Mahoonak, A.R. and Ali, R.S.M. 2015. Modeling of rheological behavior of honey using genetic algorithm-artificial neural network and adaptive neuro-fuzzy inference system. Food Biosci.9(1):60-67. doi:10.1016/j.fbio.2014.12.001   DOI
26 Chen, C.R., Ramaswamy, H.S. and Alli, I. 2001. Prediction of quality changes during osmo-convective drying of blueberries using neural network models for process optimization. Drying Tech. 19(3-4):507-523. doi:10.1081/DRT-100103931   DOI
27 Correa-mosquera, A.R., Quicaz, M.C. and Zuluaga-dominguez, C.M. 2022. Shelf-life prediction of pot-honey subjected to thermal treatments based on quality attributes at accelerated storage conditions. Food Control. 142:109237. doi:10.1016/j.foodcont.2022.109237   DOI
28 Devahastin, S. and Niamnuy, C. 2010. Modelling quality changes of fruits and vegetables during drying: A review. Int J Food Sci Technol. 45(9):1755-1767. doi:10.1111/j.1365-2621.2010.02352.x   DOI
29 Mitra, J., Shrivastava, S. L. and Rao, P. S. 2015. Non-enzymatic browning and flavour Kinetics of vacuum dried onion slices. Int Agrophys. 29(1):91-100. doi:10.1515/intag-2015-0010   DOI
30 Escobedo-Avellaneda, Z., Velazquez, G., Torres, J. A., & Welti-Chanes, J. 2012. Inclusion of the variability of model parameters on shelf-life estimations for low and intermediate moisture vegetables. LWT Food Sci Tech. 47(2):364-370. doi:10.1016/j.lwt.2012.01.032    DOI
31 Kaymak-Ertekin, F. and Gedik, A. 2005. Kinetic modelling of quality deterioration in onions during drying and storage. J Food Eng. 68(4):443-453. doi:10.1016/j.jfoodeng.2004.06.022   DOI
32 Sastry, S. K. 1985. Moisture losses from perishable commodities: recent research and developments. Int J Refrig. 8(6):343-346. doi:10.1016/0140-7007(85)90029-5   DOI
33 ASAE standard 368. 4. 2008. Compression test of food materials of convex shape. American Society of Agricultural and Biological Engineers. 2000 (MAR95):580-587. http://elibrary.asabe.org/abstract.asp?aid=42544&t=2
34 Bovi, G.G., Caleb, O.J., Linke, M., Rauh, C. and Mahajan, P.V. 2016. Transpiration and moisture evolution in packaged fresh horticultural produce and the role of integrated mathematical models: A review. Biosyst Eng. 150:24-39. doi:10.1016/j.biosystemseng.07.013   DOI