Acknowledgement
This study was supported by the Rural Development Administration (RDA) through the Cooperative Research Program for Agriculture Science & Technology Development Program (Project No. PJ015618032021).
References
- Sasongko, S.B., Hadiyanto, H., Djaeni, M., Perdanianti, A.M., and Utari, F.D. 2020. Effects of drying temperature and relative humidity on the quality of dried onion slice. Heliyon. 6(7):e04338. doi:10.1016/j.heliyon.2020.e04338
- Baek H.-S. and Kim, I.S. 2020. An Analysis of the Impact of Climate Change on the Korean Onion Market. J Ind Bus. 11(3):39-50. doi:10.13106/jidb.2020.vol11.no3.39
- Cho, J. -E., Bae, R. -N. and Lee, S.K. 2010. Current Research Status of Postharvest Technology of Onion (Allium cepa L.). Hortscience Tech. 28(3):522-527.
- Sang, M. K., Han, G.D., Oh, J.Y., Chun, S.C. and Kim, K.D. 2014. Penicillium brasilianum as a novel pathogen of onion (Allium cepa L.) and other fungi predominant on market onion in Korea. Crop Prot. 65:138-142. doi:10.1016/j.cropro.2014.07.016
- Isma'ila, M., Karu, E., Zhigila, D.A. and Yuguda, U. 2017. Postharvest Storage and Shelf Life Potentials among Selected Varieties of Onion (Allium cepa L). Scholars Acad J Biosci. 5(4):271-277. doi:10.21276/sajb
- Jang, S.-H. and Lee, S.-K. 2009. Current Research Status of Postharvest Technology of Onion. Korean J Hortscience Tech. 27(3):511-520.
- Porras-Amores, C., Mazarron, F.R. and Canas, I. 2014. Study of the vertical distribution of air temperature in warehouses. Energies. 7(3):1193-1206. doi:10.3390/en7031193
- Abbott, J.A. 1999. Quality measurement of fruits and vegetables. Postharvest Bio Tech. 15(3):207-225. doi:10.1016/S0925-5214(98)00086-6
- Soliman, S.N. and El-Sayed, A.E. 2017. Penetration and Stress-Strain Behavior of Potato Tubers During Storage. Misr J Ag Eng. 34(4):2291-2310. doi:10.21608/mjae.2017.97514
- Masoudi, H., Tabatabaeefar, A. and Borghaee, A. M. 2007. Determination of storage effect on mechanical properties of apples using the uniaxial compression test. Can Bio Eng. 49:3.29-33.
- Eboibi, O. and Uguru, H. 2017. Storage conditions effect on physic-mechanical properties of Nandini cucumber. Int J Eng Tech Res. 7(11):48-56.
- Mohsenin, N.N. 2020. Physical Properties of Plant and Animal Materials: V. 1: Physical Characteristics and Mechanical Properties. 2nd Ed. Routledge, New York, USA, pp. 702. doi:10.4324/9781003062325
- Ferreira, A.P.S, de Souza, C.S., Pereira, A.M., Cardoso, D.S.C.P., Finger, F.L. and Rego, E.R. 2015. Storage of onions in farm scale ventilated silos. Proceeding II International Symposium on Horticulture in Europe. pp. 123-128. doi:10.17660/ActaHortic.2015.1099.11
- Sharma, K., Ko, E.Y., Assefa, A.D., Nile, S.H and Park, S.W. 2015. A comparative study of anaerobic and aerobic decomposition of quercetin glucosides and sugars in onion at an ambient temperature. Front Life Sci. 8(2):117-123. doi:10.1080/21553769.2014.998298
- Emana, B., Afari-Sefa, V., Kebede, D., Nenguwo, N., Ayana, A. and Mohammed, H. 2017. Assessment of postharvest losses and marketing of onion in Ethiopia. Int J Post Tech and Inn. 5(4):300-319. doi:10.1504/IJPTI.2017.092466
- Falayi, F.R., Yusuf, H.A. and State, O. 2014. Performance Evaluation of a Modified Onion Storage Structure. J Emerging trends in Eng App Sci. 5(6):334-339.
- Badia-Melis, R., Mishra, P. and Ruiz-Garcia, L. 2015. Food traceability: New trends and recent advances. A review. Food Control. 57:393-401. doi:10.1016/j.foodcont.2015.05.005
- Chen, R.Y. 2017. An intelligent value stream-based approach to collaboration of food traceability cyber physical system by fog computing. Food Control. 71:124-136. doi:10.1016/j.foodcont.2016.06.042
- Shao, P., Liu, L. and Yu, J. 2021. An overview of intelligent freshness indicator packaging for food quality and safety monitoring. Trends Food Sci Technol. 118:285-296. doi:10.1016/j.tifs.2021.10.012
- Xiao, X., He, Q., Li, Z., Antoce, A.O. and Zhang, X. 2017. Improving traceability and transparency of table grapes cold chain logistics by integrating WSN and correlation analysis. Food Control. 73:1556-1563. doi:10.1016/j.foodcont.2016.11.019
- Karim, A.B., Hassan, A.Z., Akanda, M.M. and Mallik, A. Monitoring food storage humidity and temperature data using IoT. 2018. MOJ Food Process Technol. 6(4):400-404. doi:10.15406/mojfpt.2018.06.00194
- Sarmah, B. and Aruna, G. 2020. Detection of food quality and quantity at cold storage using IoT. 2020 International Conference on Wireless Communications Signal Processing and Networking (WiSPNET), pp. 200-203.
- Accorsi, R., Bortolini, M., Gamberi, M., Guidani, B., Manzini, R. and Ronzoni, M. 2021. Simulating product-packaging conditions under environmental stresses in a food supply chain cyber-physical twin. J Food Eng. 320:110930. doi:10.1016/j.jfoodeng.2021.110930
- Ramzi, M., Kashaninejad, M., Salehi, F., Sadeghi, Mahoonak, A.R. and Ali, R.S.M. 2015. Modeling of rheological behavior of honey using genetic algorithm-artificial neural network and adaptive neuro-fuzzy inference system. Food Biosci.9(1):60-67. doi:10.1016/j.fbio.2014.12.001
- Chen, C.R., Ramaswamy, H.S. and Alli, I. 2001. Prediction of quality changes during osmo-convective drying of blueberries using neural network models for process optimization. Drying Tech. 19(3-4):507-523. doi:10.1081/DRT-100103931
- Correa-mosquera, A.R., Quicaz, M.C. and Zuluaga-dominguez, C.M. 2022. Shelf-life prediction of pot-honey subjected to thermal treatments based on quality attributes at accelerated storage conditions. Food Control. 142:109237. doi:10.1016/j.foodcont.2022.109237
- Huang, X., Chen, M., Wang, W., Ge, Y. and Xie J. 2020. Shelf-life Prediction of Chilled Penaeus vannamei Using Grey Relational Analysis and Support Vector Regression. J Aquat Food Prod Tech. 29(6):507-519. doi:10.1080/10498850.2020.1766616
- Devahastin, S. and Niamnuy, C. 2010. Modelling quality changes of fruits and vegetables during drying: A review. Int J Food Sci Technol. 45(9):1755-1767. doi:10.1111/j.1365-2621.2010.02352.x
- Mitra, J., Shrivastava, S. L. and Rao, P. S. 2015. Non-enzymatic browning and flavour Kinetics of vacuum dried onion slices. Int Agrophys. 29(1):91-100. doi:10.1515/intag-2015-0010
- Escobedo-Avellaneda, Z., Velazquez, G., Torres, J. A., & Welti-Chanes, J. 2012. Inclusion of the variability of model parameters on shelf-life estimations for low and intermediate moisture vegetables. LWT Food Sci Tech. 47(2):364-370. doi:10.1016/j.lwt.2012.01.032
- Kaymak-Ertekin, F. and Gedik, A. 2005. Kinetic modelling of quality deterioration in onions during drying and storage. J Food Eng. 68(4):443-453. doi:10.1016/j.jfoodeng.2004.06.022
- ASAE standard 368. 4. 2008. Compression test of food materials of convex shape. American Society of Agricultural and Biological Engineers. 2000 (MAR95):580-587. http://elibrary.asabe.org/abstract.asp?aid=42544&t=2
- Bovi, G.G., Caleb, O.J., Linke, M., Rauh, C. and Mahajan, P.V. 2016. Transpiration and moisture evolution in packaged fresh horticultural produce and the role of integrated mathematical models: A review. Biosyst Eng. 150:24-39. doi:10.1016/j.biosystemseng.07.013
- Sastry, S. K. 1985. Moisture losses from perishable commodities: recent research and developments. Int J Refrig. 8(6):343-346. doi:10.1016/0140-7007(85)90029-5