DOI QR코드

DOI QR Code

잔류유량 기반 복원력 지수를 통한 빗물펌프장 자동운영 성능 검토

A Study of the Automatic Operation Performance of a Pump Station using Resilience Considering Residual Flows

  • 김영남 (충북대학교 토목공학과) ;
  • 이의훈 (충북대학교 토목공학부)
  • 투고 : 2021.12.10
  • 심사 : 2022.09.01
  • 발행 : 2022.12.01

초록

증가하는 도시 침수 피해에 대응하기 위해서는 내배수시스템의 비구조적인 개선이 필요하다. 본 연구에서는 유수지 유입량과 외수위를 고려한 빗물펌프장 펌프/수문 자동운영 기술을 제안하고, 성능을 평가하기 위해 잔류유량 기반 복원력를 사용하여 기존 운영과의 성능차이를 비교하였다. 제안된 자동운영은 3가지 펌프운영과 2가지 수문운영으로 구성되었다. 펌프운영을 위해 모니터링 지점의 수심을 사용하였으며, 모니터링 지점은 최초월류발생지점과 최대월류발생지점을 고려하여 선택하였다. 대상유역은 대구 비산빗물펌프장이며, 강우자료는 재현기간 30년, 50년 및 70년으로, 지속시간 30분, 60분, 90분 그리고 120분으로 설정한 확률강우를 사용하였다. 적용결과 자동운영과 기존 운영의 복원력 차이는 최소 5.20E-05에서 최대 8.07E-04로 나타났다. 지속시간이 길어질수록 복원력 차이는 크게 나타났다.

Non-structural improvements to urban drainage systems are necessary to overcome the elevated levels of urban flood damage. This study proposed a type of automatic pump/gate operation technology for urban pump stations that takes reservoir inflows and river water levels into account and its performance is compared with the current operation using the concept of residual flow-based resilience. The proposed automatic operation relies on three pump operations and two gate operations. The water depth at the monitoring node was used for the pump operation, and the monitoring node was selected in consideration of the first overflow node and the maximum overflow node. The target area is the Daegu Bisan urban pump station, and the rainfall data consisted of probability rainfall sets with durations of 30 minutes, 60 minutes, 90 minutes and 120 minutes, and frequencies of 30, 50, and 70 years. As a result of the application of the proposed operation, differences in the resilience between the automatic operation and the current operation were at least 5.20E-05 with a maximum of 8.07E-04. The longer the duration is, the greater the difference in the resilience.

키워드

과제정보

본 논문은 정부(교육부)의 재원을 한국 연구재단의 지원을 받아 수행된 연구입니다(과제번호: NRF-2019R1I1A3A01059929). 본 논문은 2021 CONVENTION 논문을 수정·보완하여 작성되었습니다

참고문헌

  1. Dong, X., Guo, H. and Zeng, S. (2017). "Enhancing future resilience in urban drainage system: Green versus grey infrastructure." Water Research, Vol. 124, pp. 280-289. DOI: https://doi.org/10.1016/j.watres.2017.07.038.
  2. Faisal, I. M., Kabir, M. R. and Nishat, A. (1999). "Non-structural flood mitigation measures for Dhaka City." Urban Water, Vol. 1, No. 2, pp. 145-153. DOI: http://dx.doi.org/10.1016/S1462-0758(00)00004-2.
  3. Hwang, Y. K., Kwon, S. H., Lee, E. H. and Kim, J. H. (2019). "Development of optimal pump operation method for urban drainage systems." In International Conference on Harmony Search Algorithm, Springer, Cham, Kuming, China, pp. 63-69. DOI: http://dx.doi.org/10.1007/978-3-030-31967-0_7.
  4. Kim, Y. T., Park, M. H. and Kwon, H. H. (2020). "Spatio-temporal summer rainfall pattern in 2020 from a rainfall frequency perspective." Journal of Korea Society of Disaster and Security, Vol. 13, No. 4, pp. 93-104. DOI: https://doi.org/10.21729/ksds.2020.13.4.93 (in Korean).
  5. Lee, E. H., Lee, Y. S., Joo, J. G., Jung, D. H. and Kim, J. H. (2017). "Investigating the impact of proactive pump operation and capacity expansion on urban drainage system resilience." Journal of Water Resources Planning and Management, Vol. 143, No. 7. DOI: https://doi.org/10.1061/(ASCE)WR.1943-5452.0000775.
  6. Lee, G. Y., Beak, H. W., Ryu, J. N., Kim, T. H. and Oh, J. I. (2012). "A comparative study on the performance of pumping station by changing measurement methods and operational logic." Journal of Korean Society of Water and Wastewater, Vol. 26, No. 6, pp. 915-925. DOI: https://doi.org/10.11001/jksww.2012.26.6.915 (in Korean).
  7. Lee, W. H., Cho, W. C. and Shim, J. H. (1992). "A new control technique of drainage pump based on fuzzy control." Journal of the Korean Society of Civil Engineers, KSCE, Vol. 12, No. 3, pp. 107-114 (in Korean).
  8. Li, C., Liu, M., Hu, Y., Zhou, R., Wu, W. and Huang, N. (2021). "Evaluating the runoff storage supply-demand structure of green infrastructure for urban flood management." Journal of Cleaner Production, Vol. 280. DOI: http://dx.doi.org/10.1016/j.jclepro.2020.124420.
  9. Maeda, M., Mizushima, H. and Ito, K. (2002). "Development of the real-time control (RTC) system for Tokyo sewage system." In Global Solutions for Urban Drainage, Ninth International Conference on Urban Drainage (9ICUD), Oregon, United States, pp. 1-16. DOI: http://dx.doi.org/10.1061/40644(2002)317.
  10. Meyer, V., Priest, S. and Kuhlicke, C. (2012). "Economic evaluation of structural and non-structural flood risk management measures: examples from the Mulde River." Natural Hazards, Vol. 62, No. 2, pp. 301-324. DOI: http://dx.doi.org/10.1007/s11069-011-9997-z.
  11. Ministry of Environment (ME) (2019). Standard guidelines for estimating flood volumes (in Korean).
  12. Ministry of Land, Transport and Maritime Affairs (MOLIT) (2011). Improvement and supplement of probability rainfall in South Korea (in Korean).
  13. Ministry of the Interior and Safety (MOIS) (2013). Disaster year book (in Korean).
  14. Mugume, S. N., Gomez, D. E., Fu, G., Farmani, R. and Butler, D. (2015). "A global analysis approach for investigating structural resilience in urban drainage systems." Water Research, Vol. 81, pp. 15-26. DOI: https://doi.org/10.1016/j.watres.2015.05.030.
  15. Pachauri, R. K., Allen, M. R., Barros, V. R., Broome, J., Cramer, W., Christ, R., Church, J. A., Clarke, L., Dahe, Q., Dasgupta, P., Dubash, N. K., Edenhofer, O., Elgizouli, I., Field, C. B., Forster, P., Friedlingstein, P., Fuglestvedt, J., Gomez-Echeverri, L., Hallegatte, S., Hegerl, G., Howden, M., Jiang, K., Jimenez Cisneroz, B., Kattsov, V., Lee, H., Mach, K. J., Marotzke, J., Mastrandrea, M. D., Meyer, L., Minx, J., Mulugetta, Y., O'Brien, K., Oppenheimer, M., Pereira, J. J., Pichs-Madruga, R., Plattner, G. K., Portner, H. O., Power, S. B., Preston, B., Ravindranath, N. H., Reisinger, A., Riahi, K., Rusticucci, M., Scholes, R., Seyboth, K., Sokona, Y., Stavins, R., Stocker, T. F., Tschakert, P., van Vuuren, D. and van Ypserle, J. P. (2014). Climate change 2014: Synthesis report, Contribution of Working Groups I, II and III to the fifth assessment report of the Intergovernmental Panel on Climate Change, pp. 151, IPCC.
  16. Pasha, M. F. K. and Lansey, K. (2009). "Optimal pump scheduling by linear programming." In World Environmental and Water Resources Congress 2009: Great Rivers, Missouri, United States, pp. 1-10. DOI: http://dx.doi.org/10.1061/41036(342)38.
  17. Rossman, L. A. and Simon, M. A. (2022). Storm water management model user's manual, version 5.2., Cincinnati: National Risk Management Research Laboratory, Office of Research and Development, US Environmental Protection Agency.
  18. Son, A. L., Kim, B. H. and Han, K. Y. (2017). "A study on real-time operation method of urban drainage system using data-driven estimation." Journal of the Korean Society of Civil Engineers, KSCE, Vol. 37, No. 6, pp. 949-963. DOI: https://doi.org/10.12652/Ksce.2017.37.6.0949 (in Korean)